
A Constraint Solver Synthesiser: Case for Support

Ian Miguel, Dharini Balasubramaniam, Ian P. Gent,
Christopher Jefferson, Tom Kelsey, Steve Linton

November 5, 2009

Abstract

This document is the case for support for Grant number EP/H004092/1, funded by the EPSRC in the UK. Our aim
is to improve dramatically the scalability of constraint technology, while removing its reliance on manual tuning by an
expert. This aim will be realised through the development of a constraint solver synthesiser, the principal components of
which are a Model Analyser, a Constraint Solver Generator, and a Generator Tuner. As a research proposal, the reader
should bear in mind that this is a proposal for future work, rather than a report on completed research.

Acknowledgements

We very gratefully thank the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom for
their very generous support of the research proposed in this document, under grant number EP/H004092/1.

1



Case for Support
A Background
Constraints are a natural, powerful means of representing
and reasoning about combinatorial problems that impact
all of our lives. For example, in the production of a univer-
sity timetable many constraints occur, such as: the maths
lecture theatre has a capacity of 100 students; art history
lectures require a venue with a slide projector; no student
can attend two lectures at once. Constraint solving offers a
means by which solutions to such problems can be found
automatically. Its simplicity and generality are fundamen-
tal to its successful application in a wide variety of dis-
ciplines, such as: scheduling; industrial design; aviation;
banking; combinatorial mathematics; and the petrochemi-
cal and steel industries, to name but a few examples [17].

Currently, applying constraint technology to a large, com-
plex problem requires significant manual tuning by an
expert. Such experts are rare. The central aim of this
project is to improve dramatically the scalability of con-
straint technology, while simultaneously removing its re-
liance on manual tuning by an expert. We propose a novel,
elegant means to achieve this: a constraint solver synthe-
siser, which generates a constraint solver specialised to a
given problem. Synthesising a constraint solver tailored
to the needs of an individual problem is a groundbreaking
direction for constraints research, which has focused on
the incremental improvement of general-purpose solvers.
Synthesising a solver from scratch has two key benefits,
both of which will have a major impact. First, it will en-
able a fine-grained optimisation not possible for a general
solver, allowing the solution of much larger, more difficult
problems. Second, it will open up many exciting research
possibilities. There are many techniques in the literature
that, although effective in a limited number of cases, are
not suitable for general use. Hence, they are omitted from
current general solvers and remain relatively undeveloped.
The synthesiser will, however, select such techniques as
they are appropriate for an input problem, creating novel
combinations to produce powerful new solvers. The result
will be a dramatic increase in the number of practical prob-
lems solvable without the input of a constraints expert.

Constraint Modelling and Solving: The State of the
Art. Constraint solving of a combinatorial problem pro-
ceeds in two phases. First, the problem is modelled as a
set of decision variables, and a set of constraints on those
variables that a solution must satisfy. A decision variable
represents a choice that must be made in order to solve the
problem. The domain of potential values associated with
each decision variable corresponds to the options for that
choice. In our timetabling example one might have two de-
cision variables per lecture, one representing its time and
the other its venue. The second phase consists of using
a constraint solver to find solutions to the model: assign-
ments of values to decision variables satisfying all con-
straints (e.g. a valid timetable). Constraint solvers typi-
cally employ a systematic backtracking search through the
space of partial assignments in order to find solutions.

Constraints research faces a major challenge: to deliver
constraint solving that scales easily to problems of prac-

tical size. Current constraint solvers, such as Choco,
Eclipse, Gecode, Ilog Solver, or our own Minion are
monolithic in design, accepting a broad range of mod-
els. This is convenient, but at the price of a necessarily
complex internal architecture, resulting in significant over-
heads and inhibitting efficiency and scalability. The com-
plexity of current solvers also means that it is often pro-
hibitively difficult to incorporate new techniques as they
appear in the literature. This is a significant disadvantage
as it is this solver “inertia” that largely dictates the direc-
tion of the field. A further drawback is that current solvers
perform little or no analysis of an input model, so individ-
ual model features cannot be exploited to produce a more
efficient solving process. To mitigate these drawbacks,
constraint solvers often allow manual tuning of the solving
process. This requires considerable expertise, preventing
the widespread adoption of constraints as a technique for
solving the most challenging combinatorial problems.

Propositional satisfiability (SAT) offers a stark example
of the effectiveness of tailoring solvers to particular prob-
lems. A SAT problem is a constraint problem in which
all variables are boolean, and constraints are given in con-
junctive normal form. Modern solvers, such as MiniSat
exploit this structure to make search extremely efficient.
Hence, SAT solvers are orders of magnitude faster than
constraint solvers applied to the same type of model, and
are used to solve large, complex SAT problems of practi-
cal interest, such as chip verification. Although monolithic
in design, our Minion solver provides strong evidence that
a careful approach to design and implementation can also
have a major impact on constraint solving. Minion has
been shown to be orders of magnitude faster than compet-
ing state-of-the-art constraint solvers [2].

Redefining the State of the Art. Constraint solving has
great potential for widespread use in solving problems of
real importance, but is inhibited by the compromises made
in monolithic solvers. By generating a solver dedicated to
a particular model, this project will unlock that potential
by greatly increasing efficiency.

Solver synthesis is summarised in Figure 1. It begins with
a novel model analysis step to determine which features of
a constraint solver are, and are not, necessary to solve an
input model efficiently. For example, a monolithic solver
might support various domain types, such as Booleans, in-
tegers, or domains represented by their bounds only. Sup-
porting multiple domain types increases the internal com-
plexity, particularly the constraint propagation algorithms
that make inferences based on the constraints in the model
and the current state. Suppose that a given model re-
quires bounds variables only; stripping out the superfluous
variable types will enable considerable streamlining of the
solver. Constraint propagation usually records inferences
as reductions to the domains of decision variables. Sup-
pose also that, for some variables, it can be determined
that only the upper bound will ever be updated by con-
straint propagation. The representation of these variables
can be simplified still further by stripping out functionality
required to revise the lower bound. This is a finer-grained
optimisation than any current solver considers.

2



!"#$%&'(#%)

*"+,-)

*"+,-)

.#'-/$($)

0"-1,&)

*,%'2"+,-)

*,%'2"+,-)

0"-1(#3) !"#$%&'(#%)

0"-1,&)

04,5(65'7"#)0"-1,&)

8,#,&'7"#)

!"#$%&'(#%)

0"-1(#3)
0"-97"#$)

!"#$%&'(#%)

0"-1,&)

!"#$%&'(#%)

*"+,-)

*"+,-)

.#'-/$($)

0"-1,&)

*,%'2"+,-)

*,%'2"+,-)

0"-1(#3) !"#$%&'(#%)

0"-1,&)

04,5(65'7"#)0"-1,&)

8,#,&'7"#)

0"-1,&)

:&"6-(#3)

;,1($,+)

*,%'2"+,-)

!"#$%&'(#%)

0"-1,&)

Figure 1: Constraint Solver Synthesis: increasing efficiency and removing manual tuning.

A further limitation of current solvers is in their fixed (and
often) opaque choice of representation for individual vari-
able types. Generally, for example, two fundamentally dif-
ferent representations are used for the domain of an in-
teger variable: a bit array for possible values indicating
their presence or absence; or a list of ranges of values
such as {[1..5],[8..10]}. Current solvers offer little
or no choice in this, and often hide their internal repre-
sentation. There are many more aspects of representation,
which can have significant effect on performance, each
with their own tradeoffs. No monolithic solver can support
all combinations. A synthesised solver, however, can be
optimised for a particular problem, with different choices
made for different variables.

Domain representation is just one component of a solver.
Other significant components include: the constraint prop-
agators and the queue that organises them, the search pro-
cedure, and management of restoration of state on back-
tracking. Each major component has sub-components that
can be optimised in special cases. Considering solver con-
struction at this level of detail enables the incorporation,
as appropriate, of some undoubtedly powerful techniques
that are not usually implemented because they have signif-
icant costs and are not always useful. These include: con-
flict recording [11]; backjumping [13]; many constraint
propagation schemes such as singleton arc consistency [6]
and neighbourhood inverse consistency [8]; and advanced
work on exploiting symmetry [10]. By generating spe-
cialised solvers, we can use these techniques when benefi-
cial, with no overhead when they are unnecessary.

Constraint solver synthesis will also expose research is-
sues often hidden behind the facade of current solvers and
their need to make a single choice on key design deci-
sions. One example is the constraint queue, responsible
for scheduling constraint propagation. It has long been
known [?] that the order in which constraints are propa-
gated can have a significant effect on overall efficiency.
However, research in this area is hampered because, in
current constraint solvers, the queue is either inaccessible,
or prohibitively complex to modify. The solver generator
will select a queuing scheme appropriate to the constraint
solver generated, for example balancing the cost against
the strength of propagation of the constraints in the queue.
Similar concerns affect every aspect of the construction
of a constraint solver, and will lead to many new insights
into important research questions in constraint solving.
Equally importantly, the synthesiser will be designed to be
extensible, fostering new research in this and other areas
of constraint solving neglected because of solver inertia.

Once model analysis is complete, the next step is to formu-
late a constraint solver specification, which will comprise

a set of compatible components describing a constraint
solver tailored to the input model. Not all combinations
of components are compatible, for example a constraint
propagator optimised for one variable type may be ineffi-
cient or even incorrect if used with another. Hence, solver
specification is itself a natural constraint problem. We will
refer to the problem generated by model analysis as the
metamodel, which could be solved by any constraint solver
(although we propose to use an elegant bootstrapping pro-
cess in which a specialised metamodel solver is produced
via the synthesiser). The variables of the metamodel repre-
sent the solver components for which choices are required
(e.g. variable types supported by the synthesised solver)
and the domains are the options for those choices. Model
analysis will naturally reduce the options for these choices,
such as ruling out support for variables that allow the re-
vision of both upper and lower bounds if only the revision
of the lower bound can take place. Constraints will ensure
only compatible combinations of components are selected.

The solver generator is responsible for taking the solu-
tion to the solver metamodel (corresponding to a solver
specification) and producing a highly-optimised constraint
solver. This is a complex task, involving choosing and
integrating the best algorithms and data structures to im-
plement the specified combination of components. To
meet this challenge, we propose a generative approach,
described in the methodology section below.

Ambitious but Achievable. Our research is highly am-
bitious. We seek to reinvent the way that constraint
solvers are built. Our programme of constructing a con-
straint solver synthesiser will enable the rapid produc-
tion of specialised solvers incorporating the latest power-
ful constraint techniques. This will make constraint solv-
ing much more important in practice, with applications in
many more domains than at present. Our ambitious re-
search is also achievable, due to our experience in build-
ing a state-of-the-art constraint solver and our proposed
methodology and research programme. Experience with
Minion has led us to identify the key research issues facing
us, to which we will apply the well-understood methodol-
ogy of generative programming.

B Programme and Methodology
B.1 Aim and Objectives
Our aim is to improve dramatically the scalability of con-
straint technology, while removing its reliance on manual
tuning by an expert. This aim will be realised through the
development of a constraint solver synthesiser, the prin-
cipal components of which are a Model Analyser, a Con-
straint Solver Generator, and a Generator Tuner.

3



The project objectives in detail are to:
1. Develop a Model Analyser that, given a constraint

model, produces a constraint solver metamodel
whose solution corresponds to a specification for a
constraint solver tailored to solving the input model.

2. Develop a Constraint Solver Generator that, given a
constraint solver specification comprising intercon-
nected solver components drawn from a component
library, produces an optimised constraint solver.

3. Develop a Generator Tuner that, via sample in-
stances of a problem class, identifies the critical
components of a candidate solver for that class and
revises the metamodel to prioritise those compo-
nents, improving the solver further.

4. Create demonstration applications, using the syn-
thesiser to address challenging problems previously
out of reach of constraint solving.

5. Evaluate thoroughly the constraint solver synthe-
siser on a diverse set of benchmarks.

B.2 Methodology
The complexity of the challenge we address demands the
use of a solid, well-understood methodology. Hence the
choice of generative programming [7], a software engi-
neering paradigm based on modelling software families (in
this case, a family of constraint solvers). Given a require-
ments specification, generative programming enables the
production of a highly customised and optimised system,
generated automatically from a component library. Our
experience with the Minion constraint solver will be in-
valuable in building this library. The advantages of gener-
ative programming over, say, dynamic linking of libraries
are threefold. First, performance, and therefore scalability,
will benefit from the leaner interfaces and tighter coupling
of components that the generative approach affords. Sec-
ond, comprehension: configuration knowledge governing
how solver components can be combined is captured in
a language designed for the purpose, rather than the lan-
guage designed for implementing the system. This sup-
ports the third advantage, extensibility: generative pro-
gramming is designed to support the integration of new
components, which will be crucial in fostering new con-
straints research within the synthesiser framework.

To construct a generative framework, we will build on
Minion. Its speed is due in large part to the use of C++
templates. We have a small number of distinct variable
types, such as Booleans and discrete integers. Using tem-
plates, the compiler automatically builds each constraint
for every combination of variable types. This avoids vir-
tual function calls and allows each propagator to be opti-
mised for its specific inputs. Unfortunately, compile time
grows as a power of the number of variable types, lim-
iting us to a single digit number of variable types. This
simultaneously shows the value of templating but also its
limits for a monolithic solver. Through a generative ap-
proach, we can expand the range of variable types, es-
sentially without limit. We can include specialised types
not normally cost-effective to include in Minion. More-
over, templates are a proven methodology for implement-
ing generative programming [7]. The advantages of solver
generation extend to fine grained details in every aspect of

the solver, tuned to a particular problem’s needs. Since it
is already template-based, we will use Minion to build a
prototype solver generator. This means we will be gener-
ating constraint solvers of world-class from a very early
stage, and we always have a working synthesiser.

As the workplan shows, we have adopted an iterative
development strategy and a rigorous evaluation sched-
ule with explicit milestones. Design and implementation
phases will be supported by extensive testing and empir-
ical analyses throughout the project. These will confirm
that the approaches taken are successful, or help suggest
remedies for any failings uncovered.

To identify the critical components of a generated solver,
we will gather profiling data on its operation during search,
instrumenting each component in the library appropriately.
This information will support both performance tuning
and evaluation. Through the nature of generative program-
ming, instrumentation will incur no cost when unused.

B.3 Research Programme
Task 1: The Model Analyser
Task 1 is to develop a Model Analyser to determine the best
combination of solver components for an input model.

WP1.1: Model Analysis The input constraint models
will be expressed in the constraint modelling language
ESSENCE′ [9]. Given an ESSENCE′ model, a range of
analyses will be performed to determine the constraint
solver features necessary to solve the model most effec-
tively. It will be relatively straightforward to determine
that a certain type of variable is not present in the model,
and so does not need to be supported by the solver. A
more detailed analysis will be required to determine that,
say, only the upper bound of a variable will be modified by
constraint propagation. There are many subtle decisions
and details that have a profound effect on constraint solv-
ing, such as the style of propagation queue (Task 2.2), or
the method of restoration of state upon backtracking (Task
2.4). Such decisions may be difficult initially, but they will
be informed by experience gained from empirical testing.

WP1.2: Generic Solver Metamodel The solver meta-
model describes the problem of finding a compatible com-
bination of components to specify a constraint solver. Its
variables represent features or sub-features of a constraint
solver, such as queuing style (see WP2.2), and their do-
mains represent the various solver components developed
in Task 2 capable of providing that feature, such as a sim-
ple queue or a two-level priority queue. Metamodel con-
straints reflect compatibilities among the elements of the
component library, hence its solutions correspond to valid
solver specifications. WP1.2 is to construct the generic
metamodel, which describes the compatibilities among the
entire component library, and hence encompasses all pos-
sible options for solver synthesis. The generic metamodel
will be adapted to the task of synthesising a solver sug-
gested by model analysis in WP1.3.

WP1.3: Specialising and Solving the Metamodel De-
pendent on the results of model analysis (WP1.1), we
will automate the specialisation of the generic metamodel
(WP1.2) to describe the problem of specifying a solver for

4



a particular input model. Compromise will usually be nec-
essary among the components suggested by model analy-
sis, so a key part of specialisation will be to add an ob-
jective function to the generic metamodel, to allow opti-
misation. Further examples of specialisation include re-
moving metamodel variables for configuring features that
model analysis suggests should not be part of the synthe-
sised solver, and also removing metamodel domain ele-
ments corresponding to components that model analysis
has ruled out (e.g. certain variable types). The specialised
metamodel is itself a constrained optimisation problem, so
it can be solved by a constraint solver. Its complexity will
depend on the component library of the solver generator,
but it is not expected to be difficult to solve. Initially, we
will use Minion to solve the metamodel. As the synthe-
siser develops, it will be used to bootstrap this process,
synthesising a solver specifically for the metamodel.

Task 2: The Solver Generator
Task 2 is to develop the Solver Generator that takes a con-
straint solver specification, embodied by the solution to the
metamodel, and produce an optimised constraint solver.

WP2.1: Solver Generation Component selection is per-
formed by the solution of the metamodel from Task 1,
guaranteeing that a compatible set of components have
been selected. It remains to integrate these components
efficiently to produce an optimised constraint solver. This
is a complex task, and is the responsibility of the constraint
solver generator, the focus of this workpackage. Using the
aforementioned generative architecture, the solver gener-
ator will make informed choices and tradeoffs about the
best low-level data structures and algorithms to realise the
components specified. For example, if restoration of state
is to be performed by simple block copying, the generator
may decide to pay the one-off cost of locating all back-
trackable state in a single block of memory to facilitate the
copying process, which will be performed many times.

WP2.2: Component Library: Variable Types The fine
control of the generative approach affords flexibility in the
services that a variable provides to the constraint propa-
gators and search process. For instance, a popular search
heuristic is known as smallest-domain [14], in which the
search process selects the variable with the smallest re-
maining domain to assign. To support this heuristic, the
solver must maintain this information throughout search,
which incurs an overhead. When this information is not
used, we can avoid this overhead by not recording domain
size and thus improve the efficiency of the solver.

WP2.3: Component Library: Constraint Propagation
and Propagation Queue There is extensive research on
different styles and strengths of constraint propagation for
different situations. We will use this research to populate
the propagator component library. One decision is whether
the constraint store should be dynamic (allow constraints
to be added during search) or static. The constraint propa-
gation style that is most often used records inferences sim-
ply as reductions to the variable domains. There are, how-
ever, many propagation styles that can record inferences
as new constraints, such as path consistency [12]. The
queuing mechanism, which is responsible for organising

the order in which constraint propagators are invoked, is
known to have an important effect on efficiency [15]. The
queue components will encapsulate a variety of queueing
mechanisms, from simply assuming that each propagator
has equal priority to complex multi-level queues in which
more expensive propagators are given a low priority.

WP2.4: Component Library: Search Strategies It is
well known that good search strategies and heuristics play
a vital role in efficient constraint solving. The solver gen-
erator allows us to support a wide variety of such search
strategies, including those used infrequently. A principal
component of any constraint solving search strategy are
the heuristics that decide which variable, and which value
in the domain of that variable, to assign next. The com-
ponent library will contain a variety of heuristics, from
the least to the most informed in the literature. Some re-
quire a greater overhead than others in terms of the in-
formation required to compute the heuristic, such as the
smallest-domain example given above, and hence interact
with the variable components. The library will also con-
tain various powerful, but neglected techniques, such as
backjumping [13] (which supports backtracking over mul-
tiple decisions) and conflict recording [11] (which records
the reasons for dead ends in the form of new constraints).

WP2.5: Component Library: Restoration of State
When a dead end is reached during search, a constraint
solver backtracks and tries another option. A key part of
the backtracking process is restoration of state. One option
is to make a copy of the state before each branching deci-
sion, and then restore the copy upon backtracking. If the
state is large, this can be expensive, but for problem classes
with small state, this is a viable option. Another approach,
which is more appropriate when the state is large, is to
record only the parts of the state that change, and restore
them upon backtracking. As per our Minion solver, we
will also employ watched literals [3], a technique adopted
from propositional satisfiability that can drastically reduce
the amount of state restoration required.

Task 3: The Synthesiser Tuner

Most constraint models describe a parameterised problem
class (e.g. the class of sudoku puzzles). For input to a
constraint solver, an instance of the class is obtained by
giving values for the parameters (e.g. the pre-filled cells
on the sudoku grid). Hence, it is natural to synthesise a
solver for a problem class. Having synthesised a solver
for a problem class, the Synthesiser Tuner will profile its
performance on sample instances to identify critical com-
ponents, use the results to revise the metamodel, and so
synthesise an improved solver. The additional work in tun-
ing can be amortised over the problem class.

WP3.1: Profile Analysis. Given an instrumented solver,
we will select test instances of the problem class for which
the solver is generated. We will be careful to select diverse
instances so as to test the solver thoroughly and form a bal-
anced view of performance. We will automate the process
of analysing the performance data to identify the critical
components of the solver on these benchmark instances in
preparation for metamodel revision (WP3.2).

5



WP3.2 Metamodel Revision. By prioritising efficient im-
plementation of critical solver components identified in the
analysis of WP3.1 over non-critical components, solver
performance can be further improved. The natural way
to produce a solver specification that reflects these prior-
ities is to modify the original solver metamodel. We will
update the constraints and objective function so that an op-
timal solution obtained by re-solving the metamodel will
correspond to a specification with the desired priorities. In
this workpackage we will automate this process.

WP3.3: Iterated Tuning. A tuned solver can itself be
profiled and analysed. We will use the synthesiser tuner it-
eratively to progressively hone a solver using two or more
phases of synthesis and profiling. Furthermore, if tun-
ing has had the opposite effect to that desired (i.e. per-
formance degradation), perhaps as a result of insufficient
test data, iterated tuning offers the opportunity to compare
the analyses of two (or more) solvers to gain a yet clearer
picture of the key decisions in synthesising a solver for a
given problem class.

WP3.4: PhD Support. Task 3 will be the subject of a
PhD studentship supervised by Ian Miguel. We include
here PhD support which does not otherwise contribute to
the project. As well as normal supervisions and compli-
ance with departmental procedures at St Andrews, we have
laid aside two substantial periods of time. At the start of
the project the student will undertake a literature review in
relevant aspects of constraint programming and software
engineering. Time has been put aside for writing up.
Task 4: Demonstrator Applications

Task 4 is to create applications to test the synthesiser dur-
ing development, and to demonstrate how it can solve
problems previously out of reach of constraint solving.

WP4.1: Applications We will require applications with
which to test the synthesiser and its components through-
out the project. We already have a large benchmark suite
for Minion, containing various important problem types
such as planning, scheduling and packing, but will enlarge
this throughout the project for evaluation purposes.

WP4.2: Demonstrators For communication and outreach
to other fields, we will identify a much smaller suite of
demonstrator problems drawn from diverse areas, such
as bioinformatics, combinatorial mathematics, and indus-
trial design, planning and scheduling. We will then test
whether the synthesiser can produce constraint solvers
powerful enough to solve them.
Task 5: Evaluation
We will evaluate the synthesiser throughout development.
This will provide feedback on early prototypes and a sig-
nificant body of final empirical results.

WP5.1: Evaluating the Model Analyser. This work-
package will evaluate our success in creating an automated
model analyser capable of determining the combination of
solver components best suited to solving an input model.
For each of a benchmark set of ESSENCE′ models, we will
compare the solver specification produced, as expressed in
the solution to the solver metamodel, against a hand anal-
ysis produced using our own expertise. Where the two

differ, we will examine whether the hand analysis is itself
an alternative solution to the metamodel (in which case it
might be desirable to alter the objective function of the
metamodel), or whether the hand analysis had a deeper
insight into the model (in which case we must consider
improvements to the model analyser).

WP5.2: Evaluating the Solver Generator. This work-
package will evaluate our central hypothesis: that highly-
specialised constraint solvers can significantly outperform
existing state-of-the-art monolithic solvers. We will use a
benchmark set of ESSENCE′ models, synthesising a solver
for each. The synthesised solvers will be compared against
existing solvers applied to the same model. Here we will
exploit the fact that ESSENCE′ is solver-independent, and
hence an ESSENCE′ model is suitable for input to a variety
of constraint solvers with few significant modifications.

WP5.3: Evaluating the Synthesiser Tuner. This work-
package will evaluate the extent to which the synthesiser
tuner can improve a synthesised solver. For each of a
benchmark set of models, we will compare the solver syn-
thesised from that model without tuning against the tuned
version of that solver. We will experiment with the size
and composition of the set of training instances used for
tuning, as well as the utility of iterated tuning, in which a
tuned solver is itself profiled and analysed to see if further
improvements can still be made.
B.4 Timeliness and Novelty
To the best of our knowledge, the research herein is com-
pletely novel. The closest point of comparison is the G12
project [16]. Although this project also seeks to generate a
solver for an individual problem, the approach taken is to
combine existing general solvers from constraints and re-
lated fields like propositional satisfiability and operations
research into a hybrid. This is a quite different challenge:
to enable solvers from different disciplines to communi-
cate effectively. The timeliness of this project lies in the
maturity of the Minion constraint solver, from which we
have learned a great deal about the importance of careful
design and implementation of a constraint solver.
B.5 Management, People and Development, Risk
The Principal Investigator, Ian Miguel, is an experienced
researcher who will lead the project. Ian Gent and Steve
Linton have managed a number of grants and will as-
sist with the management process. Dharini Balasubrama-
niam will provide her expertise on software engineering
in general and generative programming in particular. Tom
Kelsey will bring to bear his experience of applying Min-
ion to challenge problems. Overall, the team has extensive
experience of managing successful grants. Regular phys-
ical meetings will ensure synchronisation of the various
project threads. We have also set a milestone at every six
months to help us to monitor our progress. Christopher
Jefferson will take on the role of software architect and act
as team lead for the software aspects of the project.

This project will be an outstanding opportunity for the de-
velopment of the staff and student employed. Apart from
working in a world-class research group, benefits will in-
clude extensive contact with the investigators with their
different specialist skills. An important aspect of develop-

6



ment will be working on a project bringing together con-
straint programmers and software engineers. The student
will particularly benefit from working on a focused project
with postdoctoral researchers as well as academic staff.

Our research is very ambitious and carries risk. Our
methodology of an iterative cycle of milestones is a part
of our risk management strategy. This will help us identify
problems early. If we discover fundamental problems with
our programme, we will be able to redirect our research ef-
forts to the interesting questions that would surely arise. In
our workplan we categorise deliverable software at mile-
stones as one of: a prototype, which may not be function-
ally complete; an alpha, which will be almost complete but
may be inefficient; a beta, which should have close to final
algorithms; and a final version.

C Relevance to Beneficiaries
Industrial Community Constraint programming has
found success in the industrial community in diverse ap-
plications such as aviation, banking and the petrochemi-
cal and steel industries. However, this success is inhib-
ited by the lack of scalability of off-the-shelf constraint
solvers. Applying constraint technology to a complex in-
dustrial problem currently requires the knowledge of a
constraint expert. The prohibitive cost of employing such
experts, and the fact that they are few in number, prevents
constraint programming from becoming truly widespread.
The constraint solver synthesiser proposed by this project
will enable users with far less experience to model and
solve complex problems. This will lead to a far greater
proportion of the industrial community being able to ex-
ploit efficient, scalable constraint technology.

The research team has extensive formal and informal in-
dustrial links with important industrialists in the con-
straints field, such as Jean-Francois Puget (ILOG/IBM),
Youssef Hamadi (Microsoft Research) and Andrew Dav-
enport (IBM). We have collaborated with all three. While
we will maintain industrial links, we have not formed a
formal collaboration for this project. No one industrial ap-
plication is our target. While it might seem appropriate to
work with a constraint technology company such as ILOG,
we have in the past been told that they regard us as com-
petition, which is a testament to the quality of our solvers
but reduces the chance for collaboration.

Academic Community There are two main groups of aca-
demic beneficiaries: the constraints community, and the
wider community with combinatorial problems to solve.
The constraints community will benefit from the availabil-
ity of new techniques for synthesising constraint solvers,
and especially from the ability to integrate new tech-
niques. This will greatly benefit research, as new ideas can
be prototyped rapidly in a production quality constraint
solver, even if they have features incompatible with current
solvers. A wider use of constraints throughout academia
will also benefit the constraints field through new ap-
plications, ideas, and collaborations. Outside the con-
straints community, researchers will benefit from the abil-
ity to construct powerful solvers for combinatorial prob-
lems without having constraints expertise, and without the
overheads imposed by monolithic solvers. We have found

our work of particular benefit to combinatorial mathemati-
cians, who have been able to find new structures of interest
to them through the use of our constraint solvers, as shown
for example by Kelsey’s semigroups work using Minion.

D Dissemination and Exploitation
We will ensure that our work is disseminated as widely
as possible. We will publish workshop, conference and
journal papers, taking advantage of the feedback received
at each stage to polish our work. Where appropriate, we
will participate in workshop series, such as those concern-
ing constraint modelling and solving, to present our early
results to the most relevant researchers. We will also tar-
get the highest quality international conferences in both AI
(e.g. IJCAI, AAAI, ECAI, CP) and Software Engineering
(e.g. GPCE, ASE), at which we already have a very strong
record of publication, to maximise the impact of our work.
We will submit mature work to the best international jour-
nals, such as Artificial Intelligence Journal and the Journal
of Automated Software Engineering.

We will continue to exploit the web to disseminate our
work to both the industrial and academic communities.
This is a particularly appropriate avenue for the new soft-
ware and benchmark sets that this project will produce,
and one with which we have been very successful in dis-
seminating our Minion constraint solver.

We will liaise with industrial contacts (above) to iden-
tify routes for transferring results into their business. The
University Research and Enterprise Service’s remit specif-
ically includes technology transfer and licencing of re-
search results. Should commercially exploitable results
arise from the project, Research and Enterprise Services
will be approached to help with the technology transfer.

Bibliography
1. A. Distler, T. Kelsey. The Monoids of Order Eight and

Nine. AISC 2008: 61-76
2. I. Gent, C. Jefferson, I. Miguel. Minion: A Fast, Scalable

Constraint Solver. ECAI, 98-102, 2006.
3. I. Gent, C. Jefferson, I. Miguel. Watched Literals for Con-

straint Propagation in Minion. CP, 182-197, 2006.
4. I. Gent, C. Jefferson, I. Miguel, P. Nightingale. Data

Structures for Generalised Arc Consistency for Exten-
sional Constraints AAAI 2007: 191-197. 2007.

5. I. Gent, I. Miguel, P. Nightingale. Generalised arc consis-
tency for the AllDifferent constraint: An empirical survey.
Artificial Intelligence: 172 (18):1973-2000, 2008.

6. C. Bessiere, R. Debruyne. Theoretical Analysis of Single-
ton Arc Consistency and Its Extensions. Artificial Intelli-
gence, 172(1), 29-41, 2008.

7. K. Czarnecki, U.W. Eisenecker. Generative Program-
ming: Methods, tools, applications, Boston, 2000.

8. E. Freuder, C. Elfe. Neighborhood inverse consistency
preprocessing. AAAI, 202-208, 1996.

9. A. M. Frisch, W. Harvey, C. Jefferson, B. Martinez Her-
nandez, I. Miguel. Essence: A Constraint Language for
Specifying Combinatorial Problems. Constraints 13(3),
268-306, 2008.

10. I. Gent, W. Harvey, T. Kelsey, S. Linton. Generic SBDD
Using Computational Group Theory. CP, 333-347, 2003.

11. G. Katsirelos, F. Bacchus. Generalized NoGoods in CSPs.
AAAI, 390-396, 2005.

12. A. K. Mackworth. Consistency in networks of relations,
Artificial Intelligence 8, 99-118, 1977.

7



13. P. Prosser. Hybrid Algorithms for the Constraint Satisfac-
tion Problem. Comp. Intelligence 9, 268-299, 1993.

14. P. W. Purdom. Search rearrangement backtracking and
polynomial average time. Artificial Intelligence 21, 117-
133, 1983.

15. C. Schulte, P. J. Stuckey. Speeding up constraint propaga-
tion. CP, 619-633, 2004.

16. P. J. Stuckey, M. J. Garca de la Banda, M. J. Maher, K.
Marriott, J. K. Slaney, Z. Somogyi, M. Wallace, T. Walsh.
The G12 Project: Mapping Solver Independent Models to
Efficient Solutions, CP, 13-16, 2005.

17. M. Wallace. Practical Applications of Constraint Pro-
gramming. Constraints 1(1/2), 139-168, 1996.

8


