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Alas, This Is Not a 
Talk About Music 
•  …but about a sub-field of Artificial 

Intelligence called variously: 
 Constraints, 
 Constraint programming, 
 Constraint satisfaction, ... 

•  We can think of the rules of, e.g. 
musical harmony, as a system of 
constraints...but that’s another talk. 
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Who Cares About Constraints? 
•  IBM recently acquired Ilog, a leading 

vendor of constraint technology. 
  1,000+ universities, 1,000+ commercial customers. 
 Clients such as: AT&T, Nissan, Visa, … 

•  CISCO acquired the ECLiPSe  
constraint logic programming system. 

•  The St Andrews Minion solver is 
used to schedule the CB1000 
Nanoproteomic Analysis System. 
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Significant Local Interest 
•  E. P. K. Tsang, 

Foundations of 
Constraint 
Satisfaction, 
Academic Press, 
1993. 
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Constraints: Background 
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Constraints: A Natural Means 
of Knowledge Representation 

•  x + y = 30 
•  Adjacent countries on map 

cannot be coloured same. 
•  The helicopter can carry one 

passenger. 
•  University timetabling: 

 No student can attend two lectures at once. 
  Lecture theatre A has a capacity of 100 students. 
  Art History lectures require a slide projector… 
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Solving Problems with 
Constraints 

•  An efficient means of finding solutions to 
combinatorial problems. 
  Planning, Scheduling, Design, Configuration, … 

•  Two phases: 
1.  Describe the problem to be solved as a 

constraint model, a format suitable for input 
to a constraint solver. 

2.  Search (automatically) for solutions to the 
model with a constraint solver. 
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Constraint Modelling & Solving 

•  A constraint model maps the features of a 
combinatorial problem onto the features of a  
constraint satisfaction problem (CSP). 

Input Problem 

Constraint 
Modelling 

Mapping from Input 
Problem to CSP 

Constraint 
Solving 

Solution(s) to CSP 

Mapping 
Back 

Solution(s) to Input 
Problem 
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The (finite-domain) 
Constraint Satisfaction Problem 

•  Given: 
1.  A finite set of decision variables. 
2.  For each decision variable, a finite 

domain of potential values. 
3.  A finite set of constraints on the decision 

variables. 
•  Find: 
•  An assignment of values to variables such 

that all constraints are satisfied. 
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1. Decision Variables 

•  A decision variable corresponds to a choice that must 
be made in solving a problem. 

•  In university timetabling we must decide, for 
example: 
  The time for each lecture. 
  The venue for each lecture. 
  The lecturer for each lecture. 
 … 
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2. Domains 

•  Values in the domain of a decision variable 
correspond to the options for a particular choice. 

•  E.g. Decide lecture time. 
  Values in this domain: 

9am, 10am, …, 5pm 
•  E.g. lecture venue. 

  Values in this domain: 
theatre A, theatre B, … 

•  A decision variable is assigned a 
single value from its domain. 
•  Equivalently: the choice associated with 

that variable is made. 
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3. Constraints 
•  scope: subset of the decision variables a constraint involves. 
•  Of the possible combinations of assignments to the 

variables in its scope, a constraint specifies:
•  Which are allowed. 

Assignments that satisfy the constraint.
•  Which are disallowed. 

Assignments that violate the constraint
•  I.e. can think of a constraint as a relation.

•  E.g. if variables tA, tB, represent 
time for lectures A, B, both taken 
by student S:
•  tA ≠ tB (student S canʼt be in two 

places at once!)
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Representing Constraints 
1.  Extensionally. 

  An explicit table of allowed/disallowed 
combinations of assignments. 

2.  Intensionally. 
  An expression that can be evaluated: 

o  E.g. =, <, ≤, ≠. 
  An algorithm that can be executed: 

o  All-different, various kinds of counting constraints, 
lexicographic ordering. 

•  It is common for a constraint solver to have 
a library of intensional constraints. 13 

c(x1, x2) 
〈2, 1〉 
〈3, 1〉 
〈3, 2〉 



Example: Sudoku 

•  Has a very neat constraint model. 
•  Example sudoku taken from: 

•  H. Simonis “Sudoku as a 
  Constraint Problem”, 
  4th International Workshop on 
  Modelling & Reformulating 
  Constraint Satisfaction 
  Problems, 2005. 

2 6 8 1 
3 7 8 6 
4 5 7 

5 1 7 9 
3 9 5 1 

4 3 2 5 
1 3 2 
5 2 4 9 

3 8 4 6 
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The Sudoku Problem 

•  Given: a 9 × 9 grid, with some entries blank, 
some containing a digit. 

•  Find: a complete grid. 

2 6 8 1 
3 7 8 6 
4 5 7 

5 1 7 9 
3 9 5 1 

4 3 2 5 
1 3 2 
5 2 4 9 

3 8 4 6 
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The Sudoku Problem: 
Constraints 

•  Such that:  
•  On any row, all entries are distinct. 

2 6 8 1 
3 7 8 6 
4 5 7 

5 1 7 9 
3 9 5 1 

4 3 2 5 
1 3 2 
5 2 4 9 

3 8 4 6 
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The Sudoku Problem: 
Constraints 

•  Such that: 
•  On any column, all entries are distinct. 

2 6 8 1 
3 7 8 6 
4 5 7 

5 1 7 9 
3 9 5 1 

4 3 2 5 
1 3 2 
5 2 4 9 

3 8 4 6 
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The Sudoku Problem: 
Constraints 

•  Such that: 
•  These (the red & white) 3 × 3 squares contain distinct 

entries. 

2 6 8 1 
3 7 8 6 
4 5 7 

5 1 7 9 
3 9 5 1 

4 3 2 5 
1 3 2 
5 2 4 9 

3 8 4 6 



19 

Sudoku: Constraint Model 

•  81 variables, one for each grid entry. 
•  Domain: {1, …, 9} 

•  For simplicity we’ll assume that pre-filled entries are 
represented by variables with singleton domains. 

•  All-different constraints on rows, cols, 3 × 3 squares. 

2 6 8 1 
3 7 8 6 
4 5 7 

5 1 7 9 
3 9 5 1 

4 3 2 5 
1 3 2 
5 2 4 9 

3 8 4 6 
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Sudoku Model: Variables 
{1,2,3,4,5,
6,7,8,9} 2 6 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 8 1 {1,2,3,4,5,

6,7,8,9} 

3 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 8 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 6 

4 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 7 

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 1 {1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 9 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 3 9 {1,2,3,4,5,

6,7,8,9} 5 1 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 4 {1,2,3,4,5,

6,7,8,9} 3 {1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 5 {1,2,3,4,5,
6,7,8,9} 

1 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 3 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 2 

5 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 4 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 9 

{1,2,3,4,5,
6,7,8,9} 3 8 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 4 6 {1,2,3,4,5,

6,7,8,9} 



Constraint Modelling & Solving 

•  The CSP is input to a constraint solver, which 
produces a solution (or solutions). 

•  The model is used to map the solution(s) back 
onto the original problem. 21 

Input Problem 

Constraint 
Modelling 

Mapping from Input 
Problem to CSP 

Constraint 
Solving 

Solution(s) to CSP 

Mapping 
Back 

Solution(s) to Input 
Problem IN OUT 



Constraint Solving 

•  Typically interleaves 2 components: 
1.  Systematic Search through a space of 

partial assignments. 
  Extend an assignment to a subset of the variables 

incrementally. 
  Backtrack if establish that current partial 

assignment cannot be extended to a solution. 
2.  Constraint Propagation. 

  Deduction based on constraints, current domains. 
  Usually recorded as reductions in domains.  22 

Solutions 



Sudoku: Constraint Propagation 
•  The all-different 

constraints in the Sudoku 
model propagate well, 
leading to lots of useful 
deductions. 

•  As we will see these 
(probably) correspond to 
the way in which you make 
deductions when solving 
sudoku.   

23 

2 6 8 1 
3 7 8 6 
4 5 7 

5 1 7 9 
3 9 5 1 

4 3 2 5 
1 3 2 
5 2 4 9 

3 8 4 6 
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Sudoku: Propagation 
{1,2,3,4,5,
6,7,8,9} 2 6 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 8 1 {1,2,3,4,5,

6,7,8,9} 

3 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 8 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 6 

4 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 7 

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 1 {1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 9 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 3 9 {1,2,3,4,5,

6,7,8,9} 5 1 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 4 {1,2,3,4,5,

6,7,8,9} 3 {1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 5 {1,2,3,4,5,
6,7,8,9} 

1 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 3 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 2 

5 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 4 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 9 

{1,2,3,4,5,
6,7,8,9} 3 8 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 4 6 {1,2,3,4,5,

6,7,8,9} 

Propagate AllDiff on 3 × 3 square.  

{1,2,3,4,5,6, 
7,8,9} 2 6 

3 {1,2,3,4,5,6,
7,8,9} 

{1,2,3,4,5,6,
7,8,9} 

4 {1,2,3,4,5,6,
7,8,9} 

1,2,3,4,5,6,7
,8,9} 
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Sudoku: Propagation 
{1,5,7,8, 

9} 2 6 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 8 1 {1,2,3,4,5,

6,7,8,9} 

3 {1,5,7,8, 
9} 

{1,5,7,8, 
9} 7 {1,2,3,4,5,

6,7,8,9} 8 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 6 

4 {1,5,7,8, 
9} 

{1,5,7,8, 
9} 

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 7 

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 1 {1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 9 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 3 9 {1,2,3,4,5,

6,7,8,9} 5 1 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 4 {1,2,3,4,5,

6,7,8,9} 3 {1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 5 {1,2,3,4,5,
6,7,8,9} 

1 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 3 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 2 

5 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 4 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 9 

{1,2,3,4,5,
6,7,8,9} 3 8 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 4 6 {1,2,3,4,5,

6,7,8,9} 

Propagate AllDiff on row 1 

{1,5, 
7,8,9} 2 6 

{1,2,3,
4,5,6,7
,8,9} 

{1,2,3,
4,5,6,7
,8,9} 

{1,2,3,
4,5,6,7
,8,9} 

8 1 
{1,2,3,
4,5,6,7
,8,9} 

This overlaps with the top-left 3 x 3 square we just looked at 

This is typical of how constraints communicate – through 
the domains of variables 

Domain modifications trigger propagation for constraints 
that constrain that variable. 
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Sudoku: Propagation 
{5,7,9} 2 6 {3,4,5,7, 

9} 
{3,4,5,7, 

9} 
{3,4,5,7, 

9} 8 1 {3,4,5,7, 
9} 

3 {1,5,7,8, 
9} 

{1,5,7,8, 
9} 7 {1,2,3,4,5,

6,7,8,9} 8 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 6 

4 {1,5,7,8, 
9} 

{1,5,7,8, 
9} 

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 7 

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 1 {1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 9 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 3 9 {1,2,3,4,5,

6,7,8,9} 5 1 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 4 {1,2,3,4,5,

6,7,8,9} 3 {1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 5 {1,2,3,4,5,
6,7,8,9} 

1 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 3 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 2 

5 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 4 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 9 

{1,2,3,4,5,
6,7,8,9} 3 8 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 4 6 {1,2,3,4,5,

6,7,8,9} 

Propagate AllDiff on col 1.  {5,7,9} 

3 

4 

{1,2,3,4,5,6,
7,8,9} 

{1,2,3,4,5,6,
7,8,9} 

{1,2,3,4,5,6,
7,8,9} 

1 

5 

{1,2,3,4,5,6,
7,8,9} 

We have made several new deductions in the 
top-left 3 x 3 square since we first considered it. 

Generally, we would need to go back to the 
all-diff constraint on that 3x3 square to determine 
whether this can trigger yet more deductions. 

Constraint queue controls propagation order. 

Stop when we reach a fixpoint. 
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Sudoku: Propagation 
{7,9} 2 6 {3,4,5,7, 

9} 
{3,4,5,7, 

9} 
{3,4,5,7, 

9} 8 1 {3,4,5,7, 
9} 

3 {1,5,7,8, 
9} 

{1,5,7,8, 
9} 7 {1,2,3,4,5,

6,7,8,9} 8 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 6 

4 {1,5,7,8, 
9} 

{1,5,7,8, 
9} 

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 7 

{2,6,7,8, 
9} 5 {1,2,3,4,5,

6,7,8,9} 1 {1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 9 {1,2,3,4,5,
6,7,8,9} 

{2,6,7,8, 
9} 

{1,2,3,4,5,
6,7,8,9} 3 9 {1,2,3,4,5,

6,7,8,9} 5 1 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{2,6,7,8, 
9} 4 {1,2,3,4,5,

6,7,8,9} 3 {1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 5 {1,2,3,4,5,
6,7,8,9} 

1 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 3 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 2 

5 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 4 {1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 9 

{2,6,7,8, 
9} 3 8 {1,2,3,4,5,

6,7,8,9} 
{1,2,3,4,5,
6,7,8,9} 

{1,2,3,4,5,
6,7,8,9} 4 6 {1,2,3,4,5,

6,7,8,9} 

Propagate AllDiff on 3 × 3 square  

Can you see why 3, 4, 9 can be removed?  

{3,4,5,7,9} {3,4,5,7,9} {3,4,5,7,9} 

7 {1,2,3,4,5,6,
7,8,9} 8 

{1,2,3,4,5,6,
7,8,9} 5 1,2,3,4,5,6,7

,8,9} 

This is an example of a less obvious deduction 

In fact alldiff propagator removes all values that 
cannot participate in a solution to that constraint 
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…And so on: 
{7} 2 6 {4} {9} {3} 8 1 {5} 
3 {1} {5} 7 {2} 8 {9} {4} 6 
4 {8} {9} {6} 5 {1} {2} {3} 7 

{8} 5 {2} 1 {4} 7 {6} 9 {3} 
{6} {7} 3 9 {8} 5 1 {2} {4} 
{9} 4 {1} 3 {6} 2 {7} 5 {8} 
1 {9} {4} {8} 3 {6} {5} {7} 2 
5 {6} {7} 2 {1} 4 {3} {8} 9 

{2} 3 8 {5} {7} {9} 4 6 {1} 



Sudoku: Propagation 
•  As Simonis demonstrated: 

 H. Simonis “Sudoku as a Constraint 
Problem”, 4th International Workshop on 
Modelling & Reformulating Constraint 
Satisfaction Problems, 2005. 

•  For Sudoku constraint propagation is 
almost always sufficiently powerful to 
find the solution. 
  By design, each sudoku has one solution. 

•  Unfortunately, this is not generally the 
case… 29 



Constraint Modelling Languages 

•  We do not usually work directly with CSPs, 
which can be large and cumbersome. 

•  Instead we work with constraint modelling 
languages. 
  A model in such a language is a 

recipe, which, when followed, 
produces a CSP. 

  Typically much more compact 
(support for loops, for example). 

  Support models of problem  
classes. 30 



Classes vs Instances 
•  A problem class describes a family of problems, 

related by a common set of parameters. 
•  Obtain an instance: give values for the parameters. 
•  A CSP corresponds to a single instance (ie we 

solve instances not whole classes). 
•  Example: n-queens problem class. 

Place n queens on an n x n chess board such that 
no pair of queens attack each other. 

•  Here is a solution to the 
4-queens instance. 

31 



The Story So Far 
•  The constraint satisfaction problem: 

variables, domains, constraints. 
•  Constraint solving: search & propagation. 
•  Constraint modelling languages: classes versus instances. 

32 
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What’s Wrong with the State 
of the Art? 

2 Key Challenges in 
Constraints Research 

33 



1: The Modelling Bottleneck 
•  Typically many ways to model a given problem. 
•  Model has substantial effect on solving efficiency. 
•  Choosing the best model is very difficult, needs 

expertise. 
•  Solution: try to automate modelling, encoding 

human expertise. 
  E.g. Tailor system by Rendl et al. 

34 

Problems Modelling Solutions 

Modelling not the focus of this talk. 
Will return to this topic briefly later 



2: Efficient Solving 
•  The CSP is NP-complete. 
•  In the worst case, we can expect to take time 

exponential in the size of the problem. 
•  We have to work hard to solve industrial-

sized problems. 
 We have to tune our constraint solvers 

carefully to get best performance. 
  This is difficult, and requires expertise. 
  Improving this situation is the focus of the 

rest of the talk. 
35 



Monoliths 

36 



Monoliths 

•  Existing constraint solvers are 
monolithic in nature: 
•  In the sense of large, complex, 

powerful, inscrutable. 
•  They accept a broad range of 

constraint models. 
•  This is convenient: with one solver 

you can solve a wide range of 
problems. 

37 



Monoliths: Disadvantages 
•  Monolithic solvers convenient, but: 

•  This architecture does not lend 
itself to optimising the solver. 
o Since it has to support a wide range 

of models/search strategies. 
•  Makes it difficult to incorporate 

new/interesting techniques: 
o E.g. learning, different methods/

strengths of constraint propagation. 
o Since implementation has to sit in a 

complex architecture. 
o This leads to solver inertia. 
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Monoliths: Compromised 
•  Monolithic solvers are a 

collection of compromises. 
•  How can we make the best 

choice (or even selection) of: 
•  Propagator strength & queuing. 
•  Variable representation. 
•  Search strategies. 
•  Restoration of state. 
to suit all possible input models? 

39 



If Things Were Simpler 

A Digression 
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Propositional Satisfiability (SAT) 
•  Basically, a special type of constraint problem: 

  All variables have two values in their domain: 
true, false. 

  All constraints are disjunctions of literals: 
x ∨ ¬y ∨ z 

•  So: SAT problems much simpler (structurally) 
than general constraint problems. 

•  Result: Powerful, 
highly-optimised SAT solvers. 
  Scale well to some industrial 

problems. 
  E.g. chip verification. 
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Mixed Integer Programming (MIP) 
•  Basically, a special type of constraint problem: 

  Two kinds of variables: 
floats, integers. 

 Constraints are linear inequalities. 
•  So: MIP problems much simpler (structurally) 

than general constraint problems. 
•  Result: Powerful, highly-optimised MIP solvers 

(e.g. CPLEX, sold by ILOG(IBM)). 
  Scale well to some industrial 

problems. 
  E.g. Scheduling Major League  

Baseball. 
42 



What Can We Learn From 
SAT/MIP Solvers 

•  These solvers are focused on relatively simple 
problem description languages. 
  If your problem can be expressed well in these 

languages, then often SAT/MIP will work very well 
for you. 

•  New ideas are relatively easy to integrate into 
the state of the art. 
  Less solver inertia. 

•  Can we translate some of this success over to 
constraints? 
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Lessons Learned from Minion 
•  Minion is our constraint solver at St Andrews: 

  http://minion.sourceforge.net/ 
•  Inspired at least in part by observing 

the success of SAT/MIP solvers. 
•  It is still monolithic: 

 Complex, inscrutable, 
accepts a wide variety of models. 

•  But, it has some of the specialisation of a 
SAT/MIP solver. 
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Lessons Learned from Minion 
•  Minion divides the variables it supports into a number 

of types (not in itself unusual): 
  Variables whose domains are ranges of integers. 
  Variables whose domains are 0/1 (very common). 
  Variables for whose domains we only keep track of 

the upper and lower bound… 
•  For each variable type, it has a special version of 

each constraint propagation algorithm. 
•  Via Chris Jefferson & C++ template magic. 
•  Optimised for that variable type. 
•  This was new, led to significant performance 

increase. 
45 



Is Minion The Answer? 
•  Not quite. 
•  Under the hood, it is still very complex. 

  Brings with it the problems of inertia. 
•  Some of the design decisions it embodies 

actively preclude certain techniques. 
  E.g. assumes for efficiency that set of constraints 

is static during search. 
  Some techniques, e.g. learning need to break this 

assumption. 
 Good example of monolithic solver being a 

collection of compromises. 46 



Is Minion The Answer? 
•  Finally, this approach doesn’t really scale. 
•  Every time we sub-divide our variable types 

(often desirable to increase efficiency): 
 We generate yet another version of every 

propagator. 
•  If we want to specialise even further, e.g. by 

arity, then it is even worse. 
•  Very quickly, it becomes infeasible. 
•  So what can we do? 
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A Constraint Solver 
Synthesiser 

EPSRC EP/H004092/1 
Began 1/10/2009 
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What If? 
•  What if we could break free of monolithic 

constraint solving? 
•  If instead of a solver suitable for a broad 

range of models, we had one optimised: 
  for a single problem class 
  or even an instance. 

•  Sounds attractive, but far too expensive 
to do manually. 

49 



A Constraint Solver 
Synthesiser 

•  If we can’t do it by hand, then let’s do it 
automatically. 

•  For a given problem, synthesise a constraint 
solver tailored to that problem’s features. 

•  This focus will allow much greater 
customisation/optimisation of the solver. 
•  Perhaps in the same style as Minion, but without 

having to commit to a fixed set of assumptions/
compromises. 

•  Allow us to scale to larger/more difficult problems. 
50 



Dominion: Overview 

1.  Look hard at an input model, 
2.  Decide what kind of solver would solve it 
3.  Synthesise a solver that fits that 

description. 
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Model Analysis 
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Model Analysis: What Are We Looking For? 
•  Which variable types do we need? 

•  We can afford a very fine-grained sub-division. 

•  Which constraint propagators do we need? 
  Specialised to the variable types & arity. 
  How should triggering, propagation queue work? 

•  Which search strategy might work? 
  Variable, value heuristics. 
  Branching strategy. 

•  Which state restoration approach? 
  Copying, Trailing, Recomputation, a mixture, ... 

•  Which bells & whistles are appropriate? 
  learning, backjumping, … 
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Model Analysis: Methods 
•  Some information will yield to a rudimentary 

analysis. 
  Basic variable types 
  Basic set of constraint propagators. 

•  Other decisions will require more 
detailed analysis. 
  E.g. analysis of the corresponding 

constraint graph. 
 Methods of heuristic, constraint propagation 

selection via graph analysis well known in 
literature. 54 
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You’re Sceptical 

•  That a static analysis of a model will be 
enough. 
  To provide the information needed to make 

all these decisions. 
 Certainly to reveal the “best” solver. 

•  You might well be right. 
 We’ll return to this point shortly. 
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Solver Generation 
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The Solver Metamodel 
•  We plan to build a component library for 

constraint solvers. 
•  Not all of these components will fit together. 

•  Can’t do smallest-domain variable ordering unless 
your variables provide a service reporting the 
current size of their domains… 

•  So we have a constraint problem: 
•  Variables: choices that need to be made to specify a 

solver, domains are options for these choices from 
the component library. 

•  Constraints: record component compatibilities. 
•  Solution: a constraint solver specification. 
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Specialising the Metamodel 
•  Generic solver metamodel describes whole 

component library. 
•  Model analysis outputs a specialised metamodel: 

•  Model analysis suggests that these are the best 
options to consider for a given model. 

•  Restrict the metamodel to these options/prioritise 
them with an objective function. 

•  Solve specialised metamodel to generate a valid 
solver specification. 
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Solver Generation 
•  The solver specification tells us which 

components to use. 
•  We still need to put them together in an 

efficient manner. 
•  Lots of low-level decisions, still to be made: 

•  e.g. data structures, locality of storage to 
promote efficient cache use… 
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Classes vs. Instances 
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Solvers for the Classes 
•  Assume we would like to synthesise a 

solver for a class of problems. 
 Not a radical assumption: 

o Means we are producing, say, a sudoku solver, or a 
school timetabling solver. 

•  Typically, problem class contains an infinite 
(or at least very large) number of instances. 
 We can use a small subset of these (training 

instances) to tune our solver. 
  The effort expended is amortised over all the 

remaining instances in the class. 61 



The Synthesiser Tuner 
1.  Instrument the synthesised solver. 
2.  Solve training instances. 
3.  Find hotspots, modify metamodel, 

re-solve, re-run. 
•  Should augment static model analysis 

considerably:  
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Synthesising for Instances 
•  When would we want to synthesise a solver 

for just one instance? 
 When that instance is very difficult to solve. 
  Applications in mathematics, for example: 

o Does a certain combinatorial structure of a certain size 
exist? Famously used to close open quasigroup (a type 
of latin square) existence problems. 

•  Seems to preclude training & tuning approach. 
 When we have just one instance, we don’t have 

the luxury of training instances. 
•  Do we have to rely on static analysis? 63 



Synthesising for Instances 
•  Do we have to rely on static analysis? 

  Perhaps not. 
•  As said, we assume the instance is hard 

(otherwise why bother going to all of this 
effort?). 

•  In which case, we can afford to spend some 
effort in probing part of the search space to 
see how a candidate solver performs. 

•  Should allow us to tune in a similar way, with 
the expense dwarfed by the time to solve 
the hard instance. 
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Back to Modelling 
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The Connection to Automated 
Constraint Modelling 

•  I have side-stepped the question of where the 
models come from. 

•  Garbage In, Garbage Out: 
 We cannot expect the synthesiser to rescue a poor 

input model that hides the problem structure a 
solver could exploit. 

•  So: we would like to connect the synthesiser to 
our efforts in automated constraint modelling 
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The Connection to Automated 
Constraint Modelling 

•  Obviously can simply to pipe whatever an 
automated modelling system produces into 
the synthesiser. 

•  But can we also propagate information 
upwards? 

•  In building and using the synthesiser we will 
gain increased insight into the features of 
models that help the solver perform best. 
 Can use this information to influence model 

selection. 67 



Summing Up 
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Some Preliminary Results 

•  Courtesy of Lars Kotthoff. 
•  A Dominion prototype: 

  Analyse models in Minion’s input language. 
 Use results of analysis to modify the Minion 

source: 
o Pare down solver to only the components needed. 
o Further sub-divide the existing variable types. 
o (so relatively simple modifications) 

  Applied to both classes and instances. 
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Some Preliminary Results 

•  Even though the modifications of Minion 
are simple: 
  This prototype out-performs standard 

Minion significantly (cuts solve time in 
half) on some problems. 

  Even when taking into account analysis/
compilation time. 
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Summary 
•  Constraint solving is a powerful technique, 

requires expertise to use effectively. 
•  The constraint solver synthesiser is an 

attempt to address this situation by: 
  Analysing a constraint model. 
 Generating a constraint solver tailored to that 

model. 
  Automatically tuning that solver to get best 

performance. 
•  Preliminary results very encouraging. 
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Thank You 

Questions? 
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