A Constraint Solver
Synthesiser

lan Miguel
School of Computer Science
University of St Andrews

lanm@cs.st-andrews.ac.uk
With:

Dharini Balasubramaniam, lan Gent, Chris Jefferson

Tom Kelsey, Lars Kotthoff, Steve Linton,
John McDermott, Angela Miguel, Peter Nightingale

J

1

Alas, This Is Not a
Talk About Music

* ...but about a sub-field of Artificial
Intelligence called variously:

= Constraints,
» Constraint programming,
= Constraint satisfaction, ...

* We can think of the rules of, e.q.
musical harmony, as a system of
constraints...but that's another talk.

Who Cares About Constraints?

« IBM recently acquired llog, a leading |E=Ey
vendor of constraint technology.

= 1 000+ universities, 1,000+ commercial customers.
= Clients such as: AT&T, Nissan, Visa, ...

« CISCO acquired the ECLiPSe s
constraint logic programming system.

« The St Andrews Minion solver is
used to schedule the CB1000
Nanoproteomic Analysis System.

Significant Local Interest

\ \l’ 'v

nm*mm

COCNTTIVE

j 5 IEACE
l J

 E. P. K. Tsang,
Foundations of

Constraint 4 FOUNDATIONS of “#
Satisfaction, ‘ SoNTRUNT IR S
Academic Press, ,,
1993. A EDWARD TSANG £

4

Constraints: Background

Constraints: A Natural Means
of Knowledge Representation

e x+y=30
* Adjacent countries on map
cannot be coloured same. X Highland ,
Ab’dnshir

* The helicopter can carry one ! paKANgU
passenger. i
* University timetabling:
* No student can attend two lectures at once.

» Lecture theatre A has a capacity of 100 students.

= Art History lectures require a slide projector...
6

Solving Problems with
Constraints

* An efficient means of finding solutions to
combinatorial problems.

* Planning, Scheduling, Design, Configuration, ...
* Two phases:

1. Describe the problem to be solved as a
constraint model, a format suitable for input
to a constraint solver.

2. Search (automatically) for solutions to the
model with a constraint solver.

Constraint Modelling & Solving

WG Constraint
Back Modelling

Constrain
Solving

= Solution(s) to CS
Problem to CSP

* A constraint model maps the features of a
combinatorial problem onto the features of a
constraint satisfaction problem (CSP).

8

The (finite-domain)
Constraint Satisfaction Problem

¢ Given:
1. A finite set of decision variables.

2. For each decision variable, a finite
domain of potential values.

3. A finite set of constraints on the decision
variables.

* Find:

* An assignment of values to variables such
that all constraints are satisfied.

1. Decision Variables

* A decision variable corresponds to a choice that must
be made in solving a problem.

* In university timetabling we must decide, for
example:

= The time for each lecture.
= The venue for each lecture.
= The lecturer for each lecture.

2. Domains

Values in the domain of a decision variable
correspond to the options for a particular choice.
E.g. Decide lecture time.
» Values in this domain:
9am, 10am, ..., 5pm
E.g. lecture venue.
* Values in this domain:
theatre A, theatre B, ...
A decision variable is assigned a
single value from its domain.

* Equivalently: the choice associated with
that variable is made.

3. Constraints

* Scope: subset of the decision variables a constraint involves.

o Of the possible combinations of assignments to the
variables in its scope, a constraint specifies:

« Which are allowed.
Assignments that satisfy the constraint.

* Which are disallowed.
Assignments that violate the constraint

e |.e. can think of a constraint as a relation.

e E.g. if variables t,, tg, represent
time for lectures A, B, both taken
by student S:

e t, 15 (student S can’t be in two
places at once!)

Representing Constraints

1. Extensionally. c(x,, x,)
= An explicit table of allowed/disallowed (2, 1)
combinations of assignments. 3, 1)
2. Intensionally. (3,2)

= An expression that can be evaluated:
o E.g.= <, 5, #
= An algorithm that can be executed:

o All-different, various kinds of counting constraints,
lexicographic ordering.

* Itis common for a constraint solver to have
a library of intensional constraints. 13

Example: Sudoku

* Has a very neat constraint model.
« Example sudoku taken from:

* H. Simonis “Sudoku as a 21 6
Constraint Problem”, 3 7
4 International Workshop on| 4
Modelling & Reformulating 5
Constraint Satisfaction 319
Problems, 2005. 4

1
5 2
318

The Sudoku Problem

2 | 6 8 1
3 7 8
4 5

5 1 7 9

319 5 1

4 3 2 5
1 3
5 2 4

3 8 4 | 6

« Given: a 9 x 9 grid, with some entries blank,
some containing a digit.

* Find: a complete grid.

The Sudoku Problem:

Constraints

3 7 (s8] 16

HEN B REE

e Such that:

e On any row, all entries are distinct.

16

The Sudoku Problem:
Constraints

Il I
E B B
H N .
I Ei KX
B H B
Il I
B B B
H

e Such that:

e On any column, all entries are distinct.

17

The Sudoku Problem:
Constraints

e Such that:

e These (the red & white) 3 x 3 squares contain distinct
entries.
18

Sudoku: Constraint Model

2 | 6 8 1
3 7 8
4 5

5 1 7 9

319 5 1

4 3 2 5
1 3
5 2 4

3 8 4 | 6

* 81 variables, one for each grid entry.
 Domain: {1, ..., 9}

e For simplicity we’ll assume that pre-filled entries are
represented by variables with singleton domains.

e All-different constraints on rows, cols, 3 x 3 squares.

Sudoku Model: Variables

{1,2’3,495, 2 6 {1’2,394,59 {1’273,4’5’ {1’2,3,4’5, 8 1 {1,2,3’475,
6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9}
3 {1,2’3,4959 {1723394959 7 {1329394)5, 8 {19293)4,59 {192’3’4,59 6
6,789 | 6,7,8,9 6,7,8,9} 6,7,8,9 | 6,7,8,9
4 {1,2,3,4,5, | {1,2,3,4,5, | {1,2,3,4,5, 5 {1,2,3,4,5, | {1,2,3,4,5, | {1,2,3,4,5, 7
6,789 | 6,789} | 67,89 6,789 | 6,789 | 67,89
{1,2,3,4,5, 5 {1,2,3,4,5, 1 {1,2,3,4,5, 7 {1,2,3,4,5, 9 {1,2,3,4,5,
6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9}
{1,2,3,4,5, | {1,2,3,4,5, 3 9 {1,2,3,4,5, 5 1 {1,2,34,5, | {1,2,34,5,
637,8,9} 697,8’9} 6’7,8’9} 6,738,9} 69798,9}
{1,2’394,5’ 4 {1,2’394,5’ 3 {19293,4’59 2 {192,3’4959 5 {1’2,39495,
6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9}
1 {1,2,3,4,5, | {1,2,3,4,5, | {1,2,3,4,5, 3 {1,2,3,4,5, | {1,2,34.5, | {1,2,34.5,)
697,899} 697,8’9} 6,7,8’9} 6’7,899} 697’8,9} 6,7’8,9}

5 {1,2’394,5’ {1,233,4,5’ 2 {132,3,4’59 4 {1,2,3’4959 {1,2,3’495, 9
6,789 | 6,7,8,9 6,7,8,9} 6,789 | 6,7,8,9
{1,2’3,495, {1’2,3,4’5, {1’2,3,4,5, {192,3,4’5, {1,293’4,5,
3 8 4 6
6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9}

20

Constraint Modelling & Solving

1 Solution(s) to Input
Problem OuT IN [Input Problem |

Maping Constraint
Back Modelling

apping from Inpu
= Problem to CSP

Constraint £
" Solving

olution(s) to CS

 The CSP is input to a constraint solver, which
produces a solution (or solutions).

 The model is used to map the solution(s) back
onto the original problem. 21

Constraint Solving (\

» Typically interleaves 2 components:

1. Systematic Search through a space of
partial assignments.

= Extend an assignment to a subset of the variables
incrementally.

= Backtrack if establish that current partial
assignment cannot be extended to a solution.

2. Constraint Propagation.
= Deduction based on constraints, current domains.
= Usually recorded as reductions in domains. ,

Sudoku: Constraint Propagation

 The all-different
constraints in the Sudoku

model propagate well, 3 o T 15 a5 p
leading to lots of useful 4 5
deductions. B I R A

* As we will see these ; : z Z : 5
(probably) correspond to 1 3
the way in which you make |5 2| |4
deductions when solving 318 216

sudoku.

23

Sudoku: Propagation

{1929394359 {1929334959
{1 ’27’% ";’ }5 ,6,) 6 6,7.8.9} 8 ! 6,7.8.9}
L |
3 {1,2,3,4,5, | {1,2,3,4,5, 6
6,7,8,9} 6,7,8,9}
3 {1 52!3’4!5!6! {1 !2!3!4!5!6!
7.89 7.89 {1,2,34,5, | {1,2,34,5, | {1,2,3,4,5,
,8,9} ,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9} 7
{1,2,3,4,5, {1,2,3,4,5,
4 {1,2,3,4,5,6, | 1,2,3,4,5,6,7 7 6.7.8.9} 9 6.7.8.9}
7,8,9} ,8,9}

T T 5 9 T 5 1 {1’2,3’495, {1’2,39495,
6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9}
{192’3a4959 4 {1,293’4959
6,7,8,9} 6,7,8,9}
1 {192’394,5’ {1929334,5’ {1329394’59 3 {19233,4359 {19293’4959 {1929334959 2
6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9}

5 {1’2’3’475’ {19293’4,5, 2 {1’2,3,4,5’ 4 {1’2,3,4’59 {1,2,3’4’59 9
6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9}

{1,293’495, 3 8 {1’29394,5, {1’293’4’5, {192,3,4’59 4 6 {1,2,3’4959
6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9}

24

Sudoku: Propagation

{1,2,3,4,5,
6,7,8,9}

(1,5 {1,2,3, | {1,2,3, | {1,2,3, {1,2,3,
78,9,} 2 6 4,5,6,7 | 4,5,6,7 | 4,5,6,7 8 1 4,5,6,7
7 8,9} | ,8,9} | ,8,9} ,8,9}
7 9} 9} ’ 6,7,8,9} ° 6,789} | 6,7,8,9} ;

4 {1,597’8, {1’5,7987 {1’2’7394’5, 5 {1?2’3,4’57 {17293’4959 {1’2,3’4,59 7
9} 9} 6,7,8’9} 6,7’899} 6,7’879} 69798,9}

9

{1,2,3,4,5,
6,7,8,9}

This overlaps with the top-left 3 x 3 square we just looked at

O 7 R O h 7 8¢ h 7 8 ¢ b 7 8 ¢ b 7 8 ¢

This is typical of how constraints communicate — through
the domains of variables

_ 1,2,3,4,5, | {1,2,34,5, {1,2,3,4,5, - 1,2,3,4,5, | {1,2,3,45,
' R ¢ ' R ¢) R ¢ O R O R

Domain modifications trigger propagation for constraints
that constrain that variable.

Sudoku: Propagation

5,7,9 . 3,457,
) Propagate AlIDiff on col 1. | : 9)
3 b |osa | o Tuesas] . uasss|uases
4 8 We have made several new deductlons in the
B top-left 3 x 3 square since we first considered it.
{1 !2!3!4!5!6! B
7,8,9}
123456 Generally, we would need to go back to the
EXY SN all-diff constraint on that 3x3 square to determine
(12,3456 whether this can trigger yet more deductions.
7,89} |
1 >
5 bS, {1,2,3,4,5,
} 6,7,8,9}
{1,2,3,4,5,6, {1,2,3,4,5, | {1,2,3.4,5, | {1,2,3,4,5, 6 {1,2,3,4,5,
7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9} 6,7,8,9}

26

Sudoku: Propagation

{3?495,7’
{7,9} 2 1
{3,4,5,7,9} {3,4,5,7,9} {3,4,5,7,9} 9%
{1,5,7,8, {1,2,3,4,5,
3 o) 6,7.89) ¢
. {1,2,3,4,5,6, g
{1’577’8, {1’2,3’4,59
4 N 7,8,9} 6.7.8.9) 7
Tl s | {1,2,3,4,56, . 1,2,3,4,56,7 | o |'ooyoy
7,8,9} ,8,9}

2,678, | {1,2,3.4,5, 12,345, | {1,2,3,4,5,
9} 6,7,8,9 > > . 6,789 | 67,89
(2,6,7.8, 4 opagate D 0 quare s {1,2,3,4,5,
9} 9719y 91 9%y 971 9% 697’899}

1 11 C8 o Y- 4 O DEe IE =10 2

i In fact alldiff propagator removes all values that
cannot participate in a solution to that constraint

..And so on:

3

4

V)

34

8

&)

i3

&)

7

12

8

s

4

kel

I}

10}

S

i3

12

3}

18}

2}

1

4

7

165

35

16}

U}

9

18}

S

1

2}

4

V)

i3

3

10}

2

/3

kel

V)

&

18}

3

16}

&

/3

16}

U}

i3

3}

18}

2

&

/3

s

4

i3

8

Sudoku: Propagation

 As Simonis demonstrated:

= H. Simonis “Sudoku as a Constraint
Problem”, 41" International Workshop on
Modelling & Reformulating Constraint
Satisfaction Problems, 2005.

* For Sudoku constraint propagation is
almost always sufficiently powerful to
find the solution.

» By design, each sudoku has one solution.

» Unfortunately, this is not generally the

case...

29

Constraint Modelling Languages

* We do not usually work directly with CSPs,
which can be large and cumbersome.

 Instead we work with constraint modelling

languages. B

= A model in such a language is a

recipe, which, when followed, ‘
produces a CSP.

* Typically much more compact ,
(support for loops, for example).™

» Support models of problem
classes.

Classes vs Instances

A problem class describes a family of problems,
related by a common set of parameters.

Obtain an instance: give values for the parameters.

A CSP corresponds to a single instance (ie we
solve instances not whole classes).

Example: n-queens problem class.
Place n queens on an n x n chess board such that
no pair of queens attack each other.

Here is a solution to the W
4-queens instance. W

g 31
W

The Story So Far

* The constraint satisfaction problem:
variables, domains, constraints.

« Constraint solving: search & propagation.
« Constraint modelling languages: classes versus instances.

§)[>olution(s) to IInpUIt1OUT IN [Input Problem [
Problem
Mapping Constraint
Back Modellin

7 Solution(s) to CSP Constraint | Mapping from Input .-

32

What’'s Wrong with the State
of the Art?

2 Key Challenges in
Constraints Research

33

1: The Modelling Bottleneck

Typically many ways to model a given problem.
Model has substantial effect on solving efficiency.

Choosing the best model is very difficult, needs
expertise.

Solution: try to automate modelling, encoding
human expertise.

» E£.g. Tailor system by Rendl ef al.

Modelling not the focus of this talk.
Will return to this topic briefly later

Problems — > Modelling |—> Solutions

34

2: Efficient Solving

 The CSP is NP-complete.

* |In the worst case, we can expect to take time
exponential in the size of the problem.

 We have to work hard to solve industrial-

sized problems.

= \\/e have to tune our constraint solvers |
carefully to get best performance. -

= This is difficult, and requires expertise.

= Improving this situation is the focus of the 5
rest of the talk. N

Monoliths

36

Monoliths

» EXxisting constraint solvers are
monolithic in nature:

* In the sense of large, complex,
powerful, inscrutable.

* They accept a broad range of
constraint models.

 This is convenient: with one solver
you can solve a wide range of
problems.

37

Monoliths: Disadvantages

 Monolithic solvers convenient, but:

* This architecture does not lend
itself to optimising the solver.

o Since it has to support a wide range
of models/search strategies.

* Makes it difficult to incorporate
new/interesting techniques:

o E.g. learning, different methods/
strengths of constraint propagation.

o Since implementation has to sit in a
complex architecture.

o This leads to solver inertia.

38

Monoliths: Compromised

* Monolithic solvers are a
collection of compromises.

 How can we make the best
choice (or even selection) of:

* Propagator strength & queuing.
* Variable representation.

« Search strategies.

» Restoration of state.

to suit all possible input models?

39

If Things Were Simpler

A Digression

40

Propositional Satisfiability (SAT)

» Basically, a special type of constraint problem:

= All variables have two values in their domain:
true, false.

= All constraints are disjunctions of literals:

xV wyVz

* S0: SAT problems much simpler (structurally)
than general constraint problems.

*'Z!‘.r /
* Result: Powerful, - Y

.

~\i\ ~;‘.I,\.'
‘§‘J iq'su

=

highly-optimised SAT solvers. 578
= Scale well to some industrial ZAs82-.5
problems.

» E.g. chip verification.

Mixed Integer Programming (MIP)

» Basically, a special type of constraint problem:

= Two kinds of variables:
floats, integers.

» Constraints are linear inequalities.

» So: MIP problems much simpler (structurally)
than general constraint problems.

Result: Powerful, highly-optimised MIP solvers
(e.g. CPLEX, sold by ILOG(IBM)).

= Scale well to some industrial
problems. W
* E.g. Scheduling Major League 31N
Baseball. |

A]

What Can We Learn From
SAT/MIP Solvers

* These solvers are focused on relatively simple
problem description languages.

* If your problem can be expressed well in these
languages, then often SAT/MIP will work very well

for you.

* New ideas are relatively easy to integrate into
the state of the art.

= | ess solver inertia.

« Can we translate some of this success over to
constraints?

43

Lessons Learned from Minion

Minion is our constraint solver at St Andrews:
» http://minion.sourceforge.net/ '

Inspired at least in part by observing
the success of SAT/MIP solvers.
It I1s still monolithic:

= Complex, inscrutable,
accepts a wide variety of models.

But, it has some of the specialisation of a
SAT/MIP solver.

el

44

Lessons Learned from Minion

* Minion divides the variables it supports into a number
of types (not in itself unusual):

» Variables whose domains are ranges of integers.
» Variables whose domains are 0/1 (very common).

» Variables for whose domains we only keep track of
the upper and lower bound...

* For each variable type, it has a special version of
each constraint propagation algorithm.

* Via Chris Jefferson & C++ template magic.
» Optimised for that variable type.

* This was new, led to significant performance,;
increase.

Is Minion The Answer?

* Not quite.

* Under the hood, it is still very complex.
* Brings with it the problems of inertia.

* Some of the design decisions it embodies
actively preclude certain techniques.

» £.g. assumes for efficiency that set of constraints
Is static during search.

* Some techniques, e.g. learning need to break this
assumption.

» Good example of monolithic solver being a
collection of compromises. 46

Is Minion The Answer?

* Finally, this approach doesn’t really scale.

* Every time we sub-divide our variable types
(often desirable to increase efficiency):

* \We generate yet another version of every
propagator.
* |f we want to specialise even further, e.g. by
arity, then it is even worse.

* Very quickly, it becomes infeasible.
* So what can we do?

47

A Constraint Solver
Synthesiser

EPSRC EP/H004092/1
Began 1/10/2009

48

What If?

 \What if we could break free of monolithic
constraint solving?

* If instead of a solver suitable for a broad
range of models, we had one optimised:

» for a single problem class
= Or even an instance.

* Sounds attractive, but far too expensive
to do manually.

49

A Constraint Solver
Synthesiser

 |f we can't do it by hand, then let's do it
automatically.

* For a given problem, synthesise a constraint
solver tailored to that problem’s features.

* This focus will allow much greater
customisation/optimisation of the solver.

* Perhaps in the same style as Minion, but without
having to commit to a fixed set of assumptions/

compromises. -
* Allow us to scale to larger/more difficult problems.

Dominion: Overview

1. Look hard at an input model,
2. Decide what kind of solver would solve it
3. Synthesise a solver that fits that

description.
IN
Constraint Model Solver Metamodel v
é .
Model Analysis | Metamodel | Solving Constraint
Solver
Solutions € Constra|nt . Constraint _ | Solver Specification
Solving Solver Generation |

ouT o

Model Analysis

52

Model Analysis: What Are We Looking For?

* Which variable types do we need?
« We can afford a very fine-grained sub-division.

* Which constraint propagators do we need?

» Specialised to the variable types & arity.
= How should triggering, propagation queue work?

* Which search strategy might work?
= Variable, value heuristics.
* Branching strategy.

* Which state restoration approach?
= Copying, Trailing, Recomputation, a mixture, ...
 Which bells & whistles are appropriate?

= learning, backjumping, ... N

Model Analysis: Methods

« Some information will yield to a rudimentary
analysis.
» Basic variable types
» Basic set of constraint propagators.

» Other decisions will require more
detailed analysis.

» £.g. analysis of the corresponding
constraint graph.

» Methods of heuristic, constraint propagation
selection via graph analysis well known in
literature. 54

You’re Sceptical

* That a static analysis of a model will be
enough.

= To provide the information needed to make
all these decisions.

= Certainly to reveal the “best” solver.

* You might well be right.
= We'll return to this point shortly.

99

Solver Generation

56

The Solver Metamodel

* We plan to build a component library for
constraint solvers.

* Not all of these components will fit together.

« Can’t do smallest-domain variable ordering unless

your variables provide a service reporting the
current size of their domains...

* S0 we have a constraint problem:

« Variables: choices that need to be made to specify a

solver, domains are options for these choices from
the component library.

* Constraints: record component compatibilities.

57
« Solution: a constraint solver specification.

Specialising the Metamodel

Generic solver metamodel describes whole
component library.

Model analysis outputs a specialised metamodel:

* Model analysis suggests that these are the best
options to consider for a given model.

* Restrict the metamodel to these options/prioritise
them with an objective function.

« Solve specialised metamodel to generate a valid
solver specification.

Constraint Mode! Solver Metamodel v _
Model Analysis Metamodel Solving Constraint
Solver
Solutions Constralnt Constraint Solver Specification
Solving Solver Generation |

Solver Generation

* The solver specification tells us which
components to use.

* We still need to put them together in an
efficient manner.
* | ots of low-level decisions, still to be made:

* e.g. data structures, locality of storage to
promote efficient cache use...

Constraint Model Solver Metamodel _
Model Analysis Metamodel Solving Constraint
Solver
. Constraint Constraint Solver Specification
Solutions : .
Solving Solver Generation

Classes vs. Instances

60

Solvers for the Classes

* Assume we would like to synthesise a
solver for a class of problems.

* Not a radical assumption:

o Means we are producing, say, a sudoku solver, or a
school timetabling solver.

* Typically, problem class contains an infinite
(or at least very large) number of instances.

» We can use a small subset of these (training
instances) to tune our solver.

* The effort expended is amortised over all the
remaining instances in the class. 61

The Synthesiser Tuner
. Instrument the synthesised solver.

. Solve training instances.

. Find hotspots, modify metamodel,

re-solve, re-run.

Should augment static model analysis

considerably:

Constraint Model Solver

l

Model Analysis Metamodel
Constraint Solve_r So_lyer_ .
Solver Generation Specification

Profiling Metamodel

Metamodel
Solving

|

Solver Revised Solver

Synthesising for Instances

* When would we want to synthesise a solver
for just one instance?
* When that instance is very difficult to solve.

» Applications in mathematics, for example:

o Does a certain combinatorial structure of a certain size
exist? Famously used to close open quasigroup (a type
of latin square) existence problems.

* Seems to preclude training & tuning approach.

* When we have just one instance, we don’t have
the luxury of training instances.

* Do we have to rely on static analysis?

Synthesising for Instances

* Do we have to rely on static analysis?
* Perhaps not.

 As said, we assume the instance is hard

(otherwise why bother going to all of this
effort?).

* In which case, we can afford to spend some
effort in probing part of the search space to
see how a candidate solver performs.

» Should allow us to tune in a similar way, with

the expense dwarfed by the time to solve,
the hard instance.

Back to Modelling

65

The Connection to Automated
Constraint Modelling

* | have side-stepped the question of where the
models come from.

 Garbage In, Garbage Out:

» \We cannot expect the synthesiser to rescue a poor
iInput model that hides the problem structure a
solver could exploit.

* S0: we would like to connect the synthesiser to
our efforts in automated constraint modelling

66

The Connection to Automated
Constraint Modelling

* Obviously can simply to pipe whatever an
automated modelling system produces into
the synthesiser.

* But can we also propagate information
upwards?

* In building and using the synthesiser we will
gain increased insight into the features of
models that help the solver perform best.

= Can use this information to influence model
selection. o7

Summing Up

68

Some Preliminary Results

» Courtesy of Lars Kotthofft.

* A Dominion prototype:
* Analyse models in Minion’s input language.

» Use results of analysis to modify the Minion
source:

o Pare down solver to only the components needed.
o Further sub-divide the existing variable types.
o (so relatively simple modifications)

= Applied to both classes and instances.

69

Some Preliminary Results

* Even though the modifications of Minion
are simple:

* This prototype out-performs standard
Minion significantly (cuts solve time in
half) on some problems.

* Even when taking into account analysis/
compilation time.

70

Summary

» Constraint solving is a powerful technique,
requires expertise to use effectively.

* The constraint solver synthesiser is an
attempt to address this situation by:

* Analysing a constraint model.

» Generating a constraint solver tailored to that
model.

= Automatically tuning that solver to get best
performance.

* Preliminary results very encouraging.

71

Thank You

Questions?

72

