
A Constraint Solver
Synthesiser

Ian Miguel
School of Computer Science

University of St Andrews
ianm@cs.st-andrews.ac.uk

With:
Dharini Balasubramaniam, Ian Gent, Chris Jefferson,

Tom Kelsey, Lars Kotthoff, Steve Linton,
John McDermott, Angela Miguel, Peter Nightingale

1

Alas, This Is Not a
Talk About Music
•  …but about a sub-field of Artificial

Intelligence called variously:
 Constraints,
 Constraint programming,
 Constraint satisfaction, ...

•  We can think of the rules of, e.g.
musical harmony, as a system of
constraints...but that’s another talk.

2

Who Cares About Constraints?
•  IBM recently acquired Ilog, a leading

vendor of constraint technology.
  1,000+ universities, 1,000+ commercial customers.
 Clients such as: AT&T, Nissan, Visa, …

•  CISCO acquired the ECLiPSe
constraint logic programming system.

•  The St Andrews Minion solver is
used to schedule the CB1000
Nanoproteomic Analysis System.

3

Significant Local Interest
•  E. P. K. Tsang,

Foundations of
Constraint
Satisfaction,
Academic Press,
1993.

4

Constraints: Background

5

6

Constraints: A Natural Means
of Knowledge Representation

•  x + y = 30
•  Adjacent countries on map

cannot be coloured same.
•  The helicopter can carry one

passenger.
•  University timetabling:

 No student can attend two lectures at once.
  Lecture theatre A has a capacity of 100 students.
  Art History lectures require a slide projector…

Highland
Moray

Ab’dnshire
P&K

Fife

Angus

Solving Problems with
Constraints

•  An efficient means of finding solutions to
combinatorial problems.
  Planning, Scheduling, Design, Configuration, …

•  Two phases:
1.  Describe the problem to be solved as a

constraint model, a format suitable for input
to a constraint solver.

2.  Search (automatically) for solutions to the
model with a constraint solver.

7

Constraint Modelling & Solving

•  A constraint model maps the features of a
combinatorial problem onto the features of a
constraint satisfaction problem (CSP).

Input Problem

Constraint
Modelling

Mapping from Input
Problem to CSP

Constraint
Solving

Solution(s) to CSP

Mapping
Back

Solution(s) to Input
Problem

8

IN OUT

The (finite-domain)
Constraint Satisfaction Problem

•  Given:
1.  A finite set of decision variables.
2.  For each decision variable, a finite

domain of potential values.
3.  A finite set of constraints on the decision

variables.
•  Find:
•  An assignment of values to variables such

that all constraints are satisfied.
9

1. Decision Variables

•  A decision variable corresponds to a choice that must
be made in solving a problem.

•  In university timetabling we must decide, for
example:
  The time for each lecture.
  The venue for each lecture.
  The lecturer for each lecture.
 …

10

2. Domains

•  Values in the domain of a decision variable
correspond to the options for a particular choice.

•  E.g. Decide lecture time.
  Values in this domain:

9am, 10am, …, 5pm
•  E.g. lecture venue.

  Values in this domain:
theatre A, theatre B, …

•  A decision variable is assigned a
single value from its domain.
•  Equivalently: the choice associated with

that variable is made.
11

3. Constraints
•  scope: subset of the decision variables a constraint involves.
•  Of the possible combinations of assignments to the

variables in its scope, a constraint specifies:
•  Which are allowed. 

Assignments that satisfy the constraint.
•  Which are disallowed. 

Assignments that violate the constraint
•  I.e. can think of a constraint as a relation.

•  E.g. if variables tA, tB, represent 
time for lectures A, B, both taken 
by student S:
•  tA ≠ tB (student S canʼt be in two 

places at once!)
12

Representing Constraints
1.  Extensionally.

  An explicit table of allowed/disallowed
combinations of assignments.

2.  Intensionally.
  An expression that can be evaluated:

o  E.g. =, <, ≤, ≠.
  An algorithm that can be executed:

o  All-different, various kinds of counting constraints,
lexicographic ordering.

•  It is common for a constraint solver to have
a library of intensional constraints. 13

c(x1, x2)
〈2, 1〉
〈3, 1〉
〈3, 2〉

Example: Sudoku

•  Has a very neat constraint model.
•  Example sudoku taken from:

•  H. Simonis “Sudoku as a
 Constraint Problem”,
 4th International Workshop on
 Modelling & Reformulating
 Constraint Satisfaction
 Problems, 2005.

2 6 8 1
3 7 8 6
4 5 7

5 1 7 9
3 9 5 1

4 3 2 5
1 3 2
5 2 4 9

3 8 4 6

15

The Sudoku Problem

•  Given: a 9 × 9 grid, with some entries blank,
some containing a digit.

•  Find: a complete grid.

2 6 8 1
3 7 8 6
4 5 7

5 1 7 9
3 9 5 1

4 3 2 5
1 3 2
5 2 4 9

3 8 4 6

16

The Sudoku Problem:
Constraints

•  Such that:
•  On any row, all entries are distinct.

2 6 8 1
3 7 8 6
4 5 7

5 1 7 9
3 9 5 1

4 3 2 5
1 3 2
5 2 4 9

3 8 4 6

17

The Sudoku Problem:
Constraints

•  Such that:
•  On any column, all entries are distinct.

2 6 8 1
3 7 8 6
4 5 7

5 1 7 9
3 9 5 1

4 3 2 5
1 3 2
5 2 4 9

3 8 4 6

18

The Sudoku Problem:
Constraints

•  Such that:
•  These (the red & white) 3 × 3 squares contain distinct

entries.

2 6 8 1
3 7 8 6
4 5 7

5 1 7 9
3 9 5 1

4 3 2 5
1 3 2
5 2 4 9

3 8 4 6

19

Sudoku: Constraint Model

•  81 variables, one for each grid entry.
•  Domain: {1, …, 9}

•  For simplicity we’ll assume that pre-filled entries are
represented by variables with singleton domains.

•  All-different constraints on rows, cols, 3 × 3 squares.

2 6 8 1
3 7 8 6
4 5 7

5 1 7 9
3 9 5 1

4 3 2 5
1 3 2
5 2 4 9

3 8 4 6

20

Sudoku Model: Variables
{1,2,3,4,5,
6,7,8,9} 2 6 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 8 1 {1,2,3,4,5,

6,7,8,9}

3 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 8 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 6

4 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 7

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 1 {1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 9 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 3 9 {1,2,3,4,5,

6,7,8,9} 5 1 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 4 {1,2,3,4,5,

6,7,8,9} 3 {1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 5 {1,2,3,4,5,
6,7,8,9}

1 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 3 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 2

5 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 4 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 9

{1,2,3,4,5,
6,7,8,9} 3 8 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 4 6 {1,2,3,4,5,

6,7,8,9}

Constraint Modelling & Solving

•  The CSP is input to a constraint solver, which
produces a solution (or solutions).

•  The model is used to map the solution(s) back
onto the original problem. 21

Input Problem

Constraint
Modelling

Mapping from Input
Problem to CSP

Constraint
Solving

Solution(s) to CSP

Mapping
Back

Solution(s) to Input
Problem IN OUT

Constraint Solving

•  Typically interleaves 2 components:
1.  Systematic Search through a space of

partial assignments.
  Extend an assignment to a subset of the variables

incrementally.
  Backtrack if establish that current partial

assignment cannot be extended to a solution.
2.  Constraint Propagation.

  Deduction based on constraints, current domains.
  Usually recorded as reductions in domains. 22

Solutions

Sudoku: Constraint Propagation
•  The all-different

constraints in the Sudoku
model propagate well,
leading to lots of useful
deductions.

•  As we will see these
(probably) correspond to
the way in which you make
deductions when solving
sudoku.

23

2 6 8 1
3 7 8 6
4 5 7

5 1 7 9
3 9 5 1

4 3 2 5
1 3 2
5 2 4 9

3 8 4 6

24

Sudoku: Propagation
{1,2,3,4,5,
6,7,8,9} 2 6 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 8 1 {1,2,3,4,5,

6,7,8,9}

3 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 8 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 6

4 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 7

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 1 {1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 9 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 3 9 {1,2,3,4,5,

6,7,8,9} 5 1 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 4 {1,2,3,4,5,

6,7,8,9} 3 {1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 5 {1,2,3,4,5,
6,7,8,9}

1 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 3 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 2

5 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 4 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 9

{1,2,3,4,5,
6,7,8,9} 3 8 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 4 6 {1,2,3,4,5,

6,7,8,9}

Propagate AllDiff on 3 × 3 square.

{1,2,3,4,5,6,
7,8,9} 2 6

3 {1,2,3,4,5,6,
7,8,9}

{1,2,3,4,5,6,
7,8,9}

4 {1,2,3,4,5,6,
7,8,9}

1,2,3,4,5,6,7
,8,9}

25

Sudoku: Propagation
{1,5,7,8,

9} 2 6 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 8 1 {1,2,3,4,5,

6,7,8,9}

3 {1,5,7,8,
9}

{1,5,7,8,
9} 7 {1,2,3,4,5,

6,7,8,9} 8 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 6

4 {1,5,7,8,
9}

{1,5,7,8,
9}

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 7

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 1 {1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 9 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 3 9 {1,2,3,4,5,

6,7,8,9} 5 1 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 4 {1,2,3,4,5,

6,7,8,9} 3 {1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 5 {1,2,3,4,5,
6,7,8,9}

1 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 3 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 2

5 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 4 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 9

{1,2,3,4,5,
6,7,8,9} 3 8 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 4 6 {1,2,3,4,5,

6,7,8,9}

Propagate AllDiff on row 1

{1,5,
7,8,9} 2 6

{1,2,3,
4,5,6,7
,8,9}

{1,2,3,
4,5,6,7
,8,9}

{1,2,3,
4,5,6,7
,8,9}

8 1
{1,2,3,
4,5,6,7
,8,9}

This overlaps with the top-left 3 x 3 square we just looked at

This is typical of how constraints communicate – through
the domains of variables

Domain modifications trigger propagation for constraints
that constrain that variable.

26

Sudoku: Propagation
{5,7,9} 2 6 {3,4,5,7,

9}
{3,4,5,7,

9}
{3,4,5,7,

9} 8 1 {3,4,5,7,
9}

3 {1,5,7,8,
9}

{1,5,7,8,
9} 7 {1,2,3,4,5,

6,7,8,9} 8 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 6

4 {1,5,7,8,
9}

{1,5,7,8,
9}

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 7

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9} 1 {1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 9 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 3 9 {1,2,3,4,5,

6,7,8,9} 5 1 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 4 {1,2,3,4,5,

6,7,8,9} 3 {1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 5 {1,2,3,4,5,
6,7,8,9}

1 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 3 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 2

5 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 4 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 9

{1,2,3,4,5,
6,7,8,9} 3 8 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 4 6 {1,2,3,4,5,

6,7,8,9}

Propagate AllDiff on col 1. {5,7,9}

3

4

{1,2,3,4,5,6,
7,8,9}

{1,2,3,4,5,6,
7,8,9}

{1,2,3,4,5,6,
7,8,9}

1

5

{1,2,3,4,5,6,
7,8,9}

We have made several new deductions in the
top-left 3 x 3 square since we first considered it.

Generally, we would need to go back to the
all-diff constraint on that 3x3 square to determine
whether this can trigger yet more deductions.

Constraint queue controls propagation order.

Stop when we reach a fixpoint.

27

Sudoku: Propagation
{7,9} 2 6 {3,4,5,7,

9}
{3,4,5,7,

9}
{3,4,5,7,

9} 8 1 {3,4,5,7,
9}

3 {1,5,7,8,
9}

{1,5,7,8,
9} 7 {1,2,3,4,5,

6,7,8,9} 8 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 6

4 {1,5,7,8,
9}

{1,5,7,8,
9}

{1,2,3,4,5,
6,7,8,9} 5 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 7

{2,6,7,8,
9} 5 {1,2,3,4,5,

6,7,8,9} 1 {1,2,3,4,5,
6,7,8,9} 7 {1,2,3,4,5,

6,7,8,9} 9 {1,2,3,4,5,
6,7,8,9}

{2,6,7,8,
9}

{1,2,3,4,5,
6,7,8,9} 3 9 {1,2,3,4,5,

6,7,8,9} 5 1 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{2,6,7,8,
9} 4 {1,2,3,4,5,

6,7,8,9} 3 {1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 5 {1,2,3,4,5,
6,7,8,9}

1 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 3 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 2

5 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 2 {1,2,3,4,5,

6,7,8,9} 4 {1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 9

{2,6,7,8,
9} 3 8 {1,2,3,4,5,

6,7,8,9}
{1,2,3,4,5,
6,7,8,9}

{1,2,3,4,5,
6,7,8,9} 4 6 {1,2,3,4,5,

6,7,8,9}

Propagate AllDiff on 3 × 3 square

Can you see why 3, 4, 9 can be removed?

{3,4,5,7,9} {3,4,5,7,9} {3,4,5,7,9}

7 {1,2,3,4,5,6,
7,8,9} 8

{1,2,3,4,5,6,
7,8,9} 5 1,2,3,4,5,6,7

,8,9}

This is an example of a less obvious deduction

In fact alldiff propagator removes all values that
cannot participate in a solution to that constraint

28

…And so on:
{7} 2 6 {4} {9} {3} 8 1 {5}
3 {1} {5} 7 {2} 8 {9} {4} 6
4 {8} {9} {6} 5 {1} {2} {3} 7

{8} 5 {2} 1 {4} 7 {6} 9 {3}
{6} {7} 3 9 {8} 5 1 {2} {4}
{9} 4 {1} 3 {6} 2 {7} 5 {8}
1 {9} {4} {8} 3 {6} {5} {7} 2
5 {6} {7} 2 {1} 4 {3} {8} 9

{2} 3 8 {5} {7} {9} 4 6 {1}

Sudoku: Propagation
•  As Simonis demonstrated:

 H. Simonis “Sudoku as a Constraint
Problem”, 4th International Workshop on
Modelling & Reformulating Constraint
Satisfaction Problems, 2005.

•  For Sudoku constraint propagation is
almost always sufficiently powerful to
find the solution.
  By design, each sudoku has one solution.

•  Unfortunately, this is not generally the
case… 29

Constraint Modelling Languages

•  We do not usually work directly with CSPs,
which can be large and cumbersome.

•  Instead we work with constraint modelling
languages.
  A model in such a language is a

recipe, which, when followed,
produces a CSP.

  Typically much more compact
(support for loops, for example).

  Support models of problem
classes. 30

Classes vs Instances
•  A problem class describes a family of problems,

related by a common set of parameters.
•  Obtain an instance: give values for the parameters.
•  A CSP corresponds to a single instance (ie we

solve instances not whole classes).
•  Example: n-queens problem class.

Place n queens on an n x n chess board such that
no pair of queens attack each other.

•  Here is a solution to the
4-queens instance.

31

The Story So Far
•  The constraint satisfaction problem:

variables, domains, constraints.
•  Constraint solving: search & propagation.
•  Constraint modelling languages: classes versus instances.

32

Input Problem

Constraint
Modelling

Mapping from Input
Problem to CSP

Constraint
Solving

Solution(s) to CSP

Mapping
Back

Solution(s) to Input
Problem IN OUT

What’s Wrong with the State
of the Art?

2 Key Challenges in
Constraints Research

33

1: The Modelling Bottleneck
•  Typically many ways to model a given problem.
•  Model has substantial effect on solving efficiency.
•  Choosing the best model is very difficult, needs

expertise.
•  Solution: try to automate modelling, encoding

human expertise.
  E.g. Tailor system by Rendl et al.

34

Problems Modelling Solutions

Modelling not the focus of this talk.
Will return to this topic briefly later

2: Efficient Solving
•  The CSP is NP-complete.
•  In the worst case, we can expect to take time

exponential in the size of the problem.
•  We have to work hard to solve industrial-

sized problems.
 We have to tune our constraint solvers

carefully to get best performance.
  This is difficult, and requires expertise.
  Improving this situation is the focus of the

rest of the talk.
35

Monoliths

36

Monoliths

•  Existing constraint solvers are
monolithic in nature:
•  In the sense of large, complex,

powerful, inscrutable.
•  They accept a broad range of

constraint models.
•  This is convenient: with one solver

you can solve a wide range of
problems.

37

Monoliths: Disadvantages
•  Monolithic solvers convenient, but:

•  This architecture does not lend
itself to optimising the solver.
o Since it has to support a wide range

of models/search strategies.
•  Makes it difficult to incorporate

new/interesting techniques:
o E.g. learning, different methods/

strengths of constraint propagation.
o Since implementation has to sit in a

complex architecture.
o This leads to solver inertia.

38

Monoliths: Compromised
•  Monolithic solvers are a

collection of compromises.
•  How can we make the best

choice (or even selection) of:
•  Propagator strength & queuing.
•  Variable representation.
•  Search strategies.
•  Restoration of state.
to suit all possible input models?

39

If Things Were Simpler

A Digression

40

Propositional Satisfiability (SAT)
•  Basically, a special type of constraint problem:

  All variables have two values in their domain:
true, false.

  All constraints are disjunctions of literals:
x ∨ ¬y ∨ z

•  So: SAT problems much simpler (structurally)
than general constraint problems.

•  Result: Powerful,
highly-optimised SAT solvers.
  Scale well to some industrial

problems.
  E.g. chip verification.

41

Mixed Integer Programming (MIP)
•  Basically, a special type of constraint problem:

  Two kinds of variables:
floats, integers.

 Constraints are linear inequalities.
•  So: MIP problems much simpler (structurally)

than general constraint problems.
•  Result: Powerful, highly-optimised MIP solvers

(e.g. CPLEX, sold by ILOG(IBM)).
  Scale well to some industrial

problems.
  E.g. Scheduling Major League

Baseball.
42

What Can We Learn From
SAT/MIP Solvers

•  These solvers are focused on relatively simple
problem description languages.
  If your problem can be expressed well in these

languages, then often SAT/MIP will work very well
for you.

•  New ideas are relatively easy to integrate into
the state of the art.
  Less solver inertia.

•  Can we translate some of this success over to
constraints?

43

Lessons Learned from Minion
•  Minion is our constraint solver at St Andrews:

  http://minion.sourceforge.net/
•  Inspired at least in part by observing

the success of SAT/MIP solvers.
•  It is still monolithic:

 Complex, inscrutable,
accepts a wide variety of models.

•  But, it has some of the specialisation of a
SAT/MIP solver.

44

Lessons Learned from Minion
•  Minion divides the variables it supports into a number

of types (not in itself unusual):
  Variables whose domains are ranges of integers.
  Variables whose domains are 0/1 (very common).
  Variables for whose domains we only keep track of

the upper and lower bound…
•  For each variable type, it has a special version of

each constraint propagation algorithm.
•  Via Chris Jefferson & C++ template magic.
•  Optimised for that variable type.
•  This was new, led to significant performance

increase.
45

Is Minion The Answer?
•  Not quite.
•  Under the hood, it is still very complex.

  Brings with it the problems of inertia.
•  Some of the design decisions it embodies

actively preclude certain techniques.
  E.g. assumes for efficiency that set of constraints

is static during search.
  Some techniques, e.g. learning need to break this

assumption.
 Good example of monolithic solver being a

collection of compromises. 46

Is Minion The Answer?
•  Finally, this approach doesn’t really scale.
•  Every time we sub-divide our variable types

(often desirable to increase efficiency):
 We generate yet another version of every

propagator.
•  If we want to specialise even further, e.g. by

arity, then it is even worse.
•  Very quickly, it becomes infeasible.
•  So what can we do?

47

A Constraint Solver
Synthesiser

EPSRC EP/H004092/1
Began 1/10/2009

48

What If?
•  What if we could break free of monolithic

constraint solving?
•  If instead of a solver suitable for a broad

range of models, we had one optimised:
  for a single problem class
  or even an instance.

•  Sounds attractive, but far too expensive
to do manually.

49

A Constraint Solver
Synthesiser

•  If we can’t do it by hand, then let’s do it
automatically.

•  For a given problem, synthesise a constraint
solver tailored to that problem’s features.

•  This focus will allow much greater
customisation/optimisation of the solver.
•  Perhaps in the same style as Minion, but without

having to commit to a fixed set of assumptions/
compromises.

•  Allow us to scale to larger/more difficult problems.
50

Dominion: Overview

1.  Look hard at an input model,
2.  Decide what kind of solver would solve it
3.  Synthesise a solver that fits that

description.

51

Constraint
Model

Model
Analysis

Solver
Metamodel

Metamodel
Solving Constraint

Solver
Specification Solver

Generation
Constraint

Solving Solutions Constraint
Solver

IN

OUT

Model Analysis

52

Model Analysis: What Are We Looking For?
•  Which variable types do we need?

•  We can afford a very fine-grained sub-division.

•  Which constraint propagators do we need?
  Specialised to the variable types & arity.
  How should triggering, propagation queue work?

•  Which search strategy might work?
  Variable, value heuristics.
  Branching strategy.

•  Which state restoration approach?
  Copying, Trailing, Recomputation, a mixture, ...

•  Which bells & whistles are appropriate?
  learning, backjumping, …

53

Model Analysis: Methods
•  Some information will yield to a rudimentary

analysis.
  Basic variable types
  Basic set of constraint propagators.

•  Other decisions will require more
detailed analysis.
  E.g. analysis of the corresponding

constraint graph.
 Methods of heuristic, constraint propagation

selection via graph analysis well known in
literature. 54

x

y z

≠

≠

≠

You’re Sceptical

•  That a static analysis of a model will be
enough.
  To provide the information needed to make

all these decisions.
 Certainly to reveal the “best” solver.

•  You might well be right.
 We’ll return to this point shortly.

55

Solver Generation

56

The Solver Metamodel
•  We plan to build a component library for

constraint solvers.
•  Not all of these components will fit together.

•  Can’t do smallest-domain variable ordering unless
your variables provide a service reporting the
current size of their domains…

•  So we have a constraint problem:
•  Variables: choices that need to be made to specify a

solver, domains are options for these choices from
the component library.

•  Constraints: record component compatibilities.
•  Solution: a constraint solver specification.

57

Specialising the Metamodel
•  Generic solver metamodel describes whole

component library.
•  Model analysis outputs a specialised metamodel:

•  Model analysis suggests that these are the best
options to consider for a given model.

•  Restrict the metamodel to these options/prioritise
them with an objective function.

•  Solve specialised metamodel to generate a valid
solver specification.

Constraint
Model

Model
Analysis

Solver
Metamodel

Metamodel
Solving Constraint

Solver
Specification Solver

Generation
Constraint

Solving Solutions Constraint
Solver

Solver Generation
•  The solver specification tells us which

components to use.
•  We still need to put them together in an

efficient manner.
•  Lots of low-level decisions, still to be made:

•  e.g. data structures, locality of storage to
promote efficient cache use…

Constraint
Model

Model
Analysis

Solver
Metamodel

Metamodel
Solving Constraint

Solver
Specification Solver

Generation
Constraint

Solving Solutions Constraint
Solver

Classes vs. Instances

60

Solvers for the Classes
•  Assume we would like to synthesise a

solver for a class of problems.
 Not a radical assumption:

o Means we are producing, say, a sudoku solver, or a
school timetabling solver.

•  Typically, problem class contains an infinite
(or at least very large) number of instances.
 We can use a small subset of these (training

instances) to tune our solver.
  The effort expended is amortised over all the

remaining instances in the class. 61

The Synthesiser Tuner
1.  Instrument the synthesised solver.
2.  Solve training instances.
3.  Find hotspots, modify metamodel,

re-solve, re-run.
•  Should augment static model analysis

considerably:

62

Constraint
Model

Model
Analysis

Solver
Metamodel

Metamodel
Solving

Solver
Specification

Solver
Generation

Constraint
Solver

Solver
Profiling

Revised Solver
Metamodel

Synthesising for Instances
•  When would we want to synthesise a solver

for just one instance?
 When that instance is very difficult to solve.
  Applications in mathematics, for example:

o Does a certain combinatorial structure of a certain size
exist? Famously used to close open quasigroup (a type
of latin square) existence problems.

•  Seems to preclude training & tuning approach.
 When we have just one instance, we don’t have

the luxury of training instances.
•  Do we have to rely on static analysis? 63

Synthesising for Instances
•  Do we have to rely on static analysis?

  Perhaps not.
•  As said, we assume the instance is hard

(otherwise why bother going to all of this
effort?).

•  In which case, we can afford to spend some
effort in probing part of the search space to
see how a candidate solver performs.

•  Should allow us to tune in a similar way, with
the expense dwarfed by the time to solve
the hard instance.

64

Back to Modelling

65

The Connection to Automated
Constraint Modelling

•  I have side-stepped the question of where the
models come from.

•  Garbage In, Garbage Out:
 We cannot expect the synthesiser to rescue a poor

input model that hides the problem structure a
solver could exploit.

•  So: we would like to connect the synthesiser to
our efforts in automated constraint modelling

66

The Connection to Automated
Constraint Modelling

•  Obviously can simply to pipe whatever an
automated modelling system produces into
the synthesiser.

•  But can we also propagate information
upwards?

•  In building and using the synthesiser we will
gain increased insight into the features of
models that help the solver perform best.
 Can use this information to influence model

selection. 67

Summing Up

68

Some Preliminary Results

•  Courtesy of Lars Kotthoff.
•  A Dominion prototype:

  Analyse models in Minion’s input language.
 Use results of analysis to modify the Minion

source:
o Pare down solver to only the components needed.
o Further sub-divide the existing variable types.
o (so relatively simple modifications)

  Applied to both classes and instances.

69

Some Preliminary Results

•  Even though the modifications of Minion
are simple:
  This prototype out-performs standard

Minion significantly (cuts solve time in
half) on some problems.

  Even when taking into account analysis/
compilation time.

70

Summary
•  Constraint solving is a powerful technique,

requires expertise to use effectively.
•  The constraint solver synthesiser is an

attempt to address this situation by:
  Analysing a constraint model.
 Generating a constraint solver tailored to that

model.
  Automatically tuning that solver to get best

performance.
•  Preliminary results very encouraging.

71

Thank You

Questions?

72

